
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

Research working in progress report requirement for

obtaining the degree of Master in Computer Science

at Pontifical Catholic University of Rio Grande do Sul.

Advisor: Prof. Dr. Alexandre de Morais Amory

Porto Alegre

2014

Fault Supervision for

Multi Robotics Systems

Felipe de Fraga Roman

2

INDEX

1 Introduction .. 7

1.1 Motivations and Goals ... 8

1.2 Organization .. 9

2 Theoretical Background ... 10

2.1 Autonomous Agents .. 10

2.2 Dependability ... 12

2.3 Multiple Robots Systems (MRS) .. 18

2.4 Dependable Multiple Robotic Systems .. 18

3 State of the Art ... 21

3.1 Individual Robots Fault Detection .. 21

3.2 Multiple Robots Fault Detection ... 21

Research Status ... 24

3.3 Research Problem ... 24

3.4 Goals ... 24

3.5 Research Questions .. 24

3.6 Techniques and Tools Analyzed .. 24

3.7 Research Activities Progress ... 32

4 References ... 44

5 Appendix .. 49

5.1 Nagios installation steps .. 49

5.2 Nagios configuration steps ... 50

5.3 ROS installation steps.. 50

5.4 ROS configuration steps .. 51

5.5 ROS Service approach source codes .. 52

3

5.6 Nagios reader plug-in source codes .. 55

Image Index

Image 1 - Agent interaction with the environment [RHB2007]11

Image 2 - Typical structure of a multi-agent system [RHB2007]12

Image 3 - The dependability concepts [BLU2004] ..13

Image 4 - A fault taxonomy [BLU2004] ...14

Image 5 - Means - Fault remove techniques [BLU2004] ...15

Image 6 – Fault Tolerance Techniques [AAV2004] ...16

Image 7 – Overview of the RoSHA architecture [RSH2013]23

Image 8 - Middleware layer [ELK2012] ...26

Image 9 - Nagios Hosts table view ..32

Image 10 - Nagios left menu items..33

Image 11 - Nagios header - Host and Service Status Totals33

Image 12 - Nagios host table view ..33

Image 13 - Nagios detailed service table view ..34

Image 14 - ROS RQT Runtime Monitor connect to Kobuki robot35

Image 15 - ROS rostopic CLI output ...35

Image 16 - Nagios service table getting ROS information ...36

Image 18 - Nagios service table communicating with Kobuki real robot37

Image 18 - Nagios reader architecture ..37

Image 19 - Nagios reader architecture in MRS ...39

Image 23 - Nagios Web portal ..50

Image 23 - ROS Service diagram ...53

5

Table Index

Table 1 - Research Activities Progress 43

6

LIST OF ABBREVIATIONS AND ACRONYMS

API – Application Protocol Interface

CLI - Command Line Interface

DCIM - Data Center Infrastructure Management

HTTP - Hypertext Transfer Protocol

MRS - Multiple Robots Systems

NRPE - Nagios Remote Plug-in Executor

P2P – Peer to Peer

POC - Proof of concept

PUCRS – Pontifical Catholic University of Rio Grande do Sul

ROS - Robot Operating System

SRS - Single-Robot Systems

TCP/IP - Transmission Control Protocol and Internet Protocol

XML - Extensible Markup Language

7

1 Introduction

Robotics started at the beginning of XX century with the needs to improve the

productivity and quality of manufacture products. Nowadays robotics becomes more

common and people start to use more robotics to help and accomplish a variety of tasks

such as robot arm, automated guided vehicles, unmanned aerial vehicles, humanoid robots

and others. Robotics is typically used to execute dangerous tasks, unhealthy tasks, places

where it is not possible to have human control, remote areas where is too hard or too

expansive to send a human, or even for tasks that demands a too big workload that a

human is not able to accomplish.

Basically there are two different kinds of robots: stationary robots and mobile robots.

Stationary robots are simpler than mobile because they are fixed at some controlled

environment. It's common to use the stationary robots on industry to automate repetitive

tasks. Also, this kind of robot is built for a very specific application. Typical applications of

stationary industrial robots include casting, painting, welding, assembly, materials handling,

product inspection, and testing. All these tasks can be performed with more accuracy and

speed compared to humans.

Mobile robotics, on the other hand, is the research area that handles the control of

autonomous vehicle or semi-autonomous vehicle [GDU2010] and [RSI2004]. Currently,

there are few commercial applications of mobile service robots: goods transportation,

surveillance, inspection, cleaning or household robots, lawn mowing, pool cleaning are just

some examples. Robotics has been evolving fast in terms of new functionalities and

becoming affordable, increasing its use in several aspects of society [PAR2010]. This fact

increased the development rate of new and more complex robotic applications [PAR2010],

which require more complex software stack [ABA2008]. Despite these improvements,

autonomous mobile robots have not yet made much impact upon industrial and domestic

applications, mainly due to the lack of dependability, robustness, reliability and flexibility in

real environments. This requires more research to enable the design of more efficient and

robust robotic applications.

One cost-effective way to provide effectiveness and robustness to robotic system is

to use multi-robots instead of a single robot. Multi-robot systems (MRS) have some

8

advantages over single-robots systems, these advantages include increased of speed for

task completion through parallelism and also can increased of robustness and reliability.

MRS can implement fault-tolerant systems. For instance, when one member of the team

fails, another can take over his work and continue that the task. An MRS of cheaper and

simpler robots can typically provide more reliability than a more expensive and complex

single robot [LEP2008]. On the other hand, MRS also present more complex challenges

compared to single robot system. For instance, MRS are more complex to manage and

coordinate the collective system, require increased communication capabilities in order to

coordinate all robots, and they are more complex to determine its global state and to debug

the system due to its distributed nature.

MRS can be classified as homogeneous or heterogeneous [SVE2005].

Homogeneous MRS means that all members of the team have the same specification

(hardware and software configuration). Heterogeneous MRS can have different kind of

robots in the same team. Homogeneous MRS is easier to replace a faulty robot. On other

hand, the advantage of heterogeneous MRS is to support different kind of specialized and

simpler robots, compared to a robot that does several different tasks.

Robotic systems can also be classified according to its autonomy level, i.e. its ability

to decide how to accomplish a task based on its perception of the environment [RHB2007].

There are robots with no autonomy at all, called tele-operated, and semi-autonomous robot

(fully autonomous robots are currently not feasible for reasonably complex applications). A

robot with some level of autonomy can be called an agent. Multi-agents systems are

commonly used to implement MRS with autonomy.

1.1 Motivations and Goals

Mobile robotics will become commonplace in the society if it can be cost-effective

and dependable. Currently the cost-effectiveness of robotics is evolving since computers

and electronics are more accessible. On the other hand, current single mobile robots lack

effectiveness and dependability. MRS are naturally more robust than single robots due its

intrinsic redundancy, but it increases the software complexity due to its distributed nature.

The goal of this work is to provide means to easily monitor faults at a team of

heterogeneous robotic agents. The detection and isolation the defective agent is a first step

toward an adaptive MRS which can execute the desired task even in the presence of faults.

9

With more dependable robotic systems, more applications can be created to serve the

society.

1.2 Organization

The Section 2 presents the theoretical background necessary to understand this

work, such as, the autonomous agents concepts, dependability concepts, and MRS.

Section 3 describes the state of the art in terms of individual robots fault detection and MRS

fault detection. Section 0 specifies the research proposal, its activities, and schedule.

10

2 Theoretical Background

This section presents a theoretical background of the main concepts used in this

research plan.

2.1 Autonomous Agents

Functional programs or traditional software work basically receiving an input, process

data and produces some output based on the received input [RHB2007]. However there are

other kinds of programs that do not work on this traditional approach. This different kind of

software maintain an ongoing interaction with their environment, they do not compute some

function based on the input and return an output. Some example of these programs

includes computer operational systems, process control systems and others. Even more

complex software that these two previously approaches are the systems called agents

system, an agent is a reactive system that contains autonomy in order to take actions

determined by himself to accomplish their goals. These different systems are called agents

because these systems are active, they are able to figure out one plan to actively pursue

their goals. [RHB2007].

2.1.1 Characteristics of Agents

Agents are systems situated in some environment. Some typical examples are the

system stock exchange agents, these systems are developed to observe the stock market

and, based on this information, take actions. The agent has the capability to percept its

environment through its sensors and it is able to cause some effects on the environment via

its actuators. See the Image 1 - Agent interaction with the environment [RHB2007].

11

Image 1 - Agent interaction with the environment [RHB2007]

According to [RHB2007] the environment occupied by an agent could be either

physical or virtual (in case of software/simulation environment). For software agent works

for virtual environment and robotics works for physical environment. The agents can take

actions that will affect the environment, but they cannot, in general, completely control the

environment. For example, a robot built to lawn-mower could stuck on a hole and not be

able to finish its work. The real environment is dynamic and cannot be controlled so even

the highly tested robots will face some unforeseen situations and fail.

There are some important features expected from agents:

• Autonomy: For agents autonomy means that agents have capacity to operate

independently. They are able to figure out and execute a determined plan to achieve

their goal.

• Pro-activeness: When an agent has been delegated to do a particular goal, the agent

needs be able to act according to his goal-directed behavior.

• Re-activeness: Be responsive to the environment changes.

• Social Ability: Instead of simple exchange of bytes and messages, for agents, social

ability means to be able to cooperate and to coordinate efforts in order to achieve their

goals.

12

2.1.2 Multi-Agent Systems

Agents inhabit an environment that others agents occupy and each one of these

agents have an impact in this environment. It is possible that one agent has control of only

part of its environment, but often there are overlapping between the impacts of different

agents into the environment, generating more complex scenarios. The Image 2 - Typical

structure of a multi-agent system [RHB2007] shows a multi-agent system interacting in the

same environment.

Image 2 - Typical structure of a multi-agent system [RHB2007]

2.2 Dependability

The dependability of a computer system is the ability to deliver service that can be

trusted [BLU2004]. There are three concepts that describe the notion of dependability. The

Image 3 demonstrates these concepts.

13

Image 3 - The dependability concepts [BLU2004]

2.2.1 Attributes

The dependability attributes could be classified as:

• Availability: Be available during a period of time and deliver a correct service during

this time.

• Reliability: Continuous deliverance of correct service during a period of time.

• Safety: Do not cause catastrophic consequences on the users and the environment.

• Confidentiality: Does not disclosure unauthorized information.

• Integrity: Absence of improper state alterations.

• Maintainability: Ability to perform repairs and modifications of the system.

2.2.2 Threats

In this section, we present the taxonomy of threats that may affect a system during

its entire life. The life cycle of a system consists of two phases: development and use

[AAV2001]. The development phase contain all activities from the initial concept

presentation, passing by the development itself until the final test phases that shows that

the system is ready to deliver the service to the user. During this phase of development,

defects or bugs could be introduced by the lack of knowledge of the development team,

complexity of the system or even for malicious objectives.

14

The threats in a system consist in failures, errors and faults. System failures are an

event that deviates the delivery of correct service. An error is the part of the system state

that may cause a failure. A failure occurs when an error reaches the service interface. A

fault is the cause of error. A fault is active when it produces an error, otherwise, it is a

dormant fault. A system can fail in different ways. There are three different taxonomies for

faults [BLU2004] as we show in the Image 4.

Image 4 - A fault taxonomy [BLU2004]

2.2.2.1 Physical Faults

Physical faults are faults due to adverse physical phenomena. For example, a

hardware sensor that does not work as expected, returning a non-valid value. A common

way to detect this kind of problems is comparing the output of two independent identical

units, like a sensor.

2.2.2.2 Design Faults

Design faults are faults unintentionally caused by man during the development of the

system. This kind of faults could be either hardware or software faults. Redundant elements

are a common way to detect and avoid this kind of faults.

2.2.2.3 Interaction Faults

Interaction faults are faults resulting from the interaction with other systems or users.

There is a distinction between accidental faults and malicious interaction faults. An operator

mistake is an example of an accidental fault and an intentional attack is a example of

malicious fault.

2.2.3 Means

For these three categories of faults mentioned before there are different ways to

prevent these faults. These approaches to prevent the faults are called means in this

diagram below:

15

Image 5 - Means - Fault remove techniques [BLU2004]

2.2.3.1 Fault Prevention

It is a way to prevent the occurrence or introduction of a fault. Fault prevention can

be considered as a fault avoidance system.

2.2.3.2 Fault Removal

It is a way to reduce the number or to reduce the severity of a fault. Fault removal

can be considered as a fault avoidance system. Both Fault Prevention and Removal are the

attempt to develop a system without faults.

2.2.3.3 Fault Tolerance

It is a way to continue delivering the correct service even when a fault occurs. Fault

Tolerance implements the concept of fault acceptance, which attempts to reduce the

consequence of a fault. The main difference between fault tolerance and maintenance is

that maintenance requires the participation of an external agent and fault tolerance not.

This work focuses on fault tolerance mechanisms.

2.2.3.4 Fault Forecasting

Is a way to estimate the future incidence or the consequences of faults. Fault

forecasting also implements the same concept of fault acceptance, i.e., an attempt to

reduce or estimate the consequence of a fault.

The development of a dependable computing system usually combines different

techniques. This work is focused on the Fault Tolerance technique, knowing that fault is

almost inevitably. Fault tolerance concepts through the redundancy of multiple robotics or

redundant sensors is a good approach to keep the system working as expected, even after

faults occur.

16

2.2.4 Fault Tolerance

Fault tolerance mechanisms typically consist of an error detection and error

recovering mechanisms [LUS2004], as illustrated in Image 6 – Fault Tolerance Techniques

[LUS2004].

Image 6 – Fault Tolerance Techniques [AAV2004]

2.2.4.1 Error Detection

Error detection originates from an error signal from the system. There are two

classes of error detection:

1. Concurrent Error Detection: the error detection works during the same time of

the service delivery

2. Preemptive Error Detection: check for error while the service delivery is

suspended. Also check for dormant faults.

In this work the focus is on the concurrent error detection system that enables the

service delivery and fault tolerance at the same time.

17

2.2.4.2 Error Recovery

Recovery [BLU2004] is the process that transforms a system from a state that

contains faults and errors to a state that can be activate again without presence of any error

or fault. Error recovery eliminates errors in three forms:

• Rollback: Return the system to a previous state where the system can be activated

again. The previous saved state is called a checkpoint or safe point. Rollback is the

most popular approach to recovery a system, however it is time and resource

consuming.

• Rollforward: Put the system in a state where there are no errors or faults. This is a new

state not previously recorded. Restart the system is a possible solution for this

approach. Note that rollback and rollforward are not mutually exclusive. Usually rollback

is the first attempted and then rollforward is a second option.

• Error Compensation: The erroneous state contains enough redundancy to handle the

fault situation and enable error elimination. A common approach for error compensation

is the fault masking. This approach requires three or more identical or similar

components to be used implementing a vote system where the majority is chosen.

These three techniques eliminate errors from the system state. Rollback and

rollforward are invoked on demand. Compensation can be applied either on demand or

systematically, at pre-scheduled events, independently of the presence of errors.

2.2.4.3 Fault handling

Summon [ROG2006], Fault handling is a technique that prevent fault from being

activated again. There are four techniques of fault handling as explained below:

• Diagnosis: Identifies the root cause of error in terms of location and type.

• Isolation: Perform exclusion of the faulty components from further participation in service

delivery. The exclusion could be both logical and physical. For physical exclusion the

fault component must have a spare component for take over the tasks.

• Reconfiguration: Set up a new configuration avoiding failed components (when it is

possible).

• Reinitialization: Checks, updates and records the new configuration and updates system

tables and records.

18

2.3 Multiple Robots Systems (MRS)

A Multiple Robots Systems (or, equivalently Collective Robotic Systems) applies the

concept of multi-agent system for robotics. Some of the advantages of the use of MRS over

Single-Robot Systems (SRS) are the increased speed of task completion through

parallelism, improved solutions for tasks that are inherently distributed in space, time, or

functionality, cheaper solutions for complex applications that can be addressed with

multiple specialized robots, instead of use of one unique all-capable robot, the increased of

robustness and reliability through redundancy [LEP2008]. But these advantages do not

come for free. For instance, determining how to manage the whole system usually is much

more complex than a SRS. The lack of centralized control is one of the reason why the

increase of complexity of MRS [VGO2004]. Also, MRS requires increased communication

to coordinate all the robots in the system. Increasing the number of robots can lead to

higher levels of interference between themselves (depends on the used communication

device and protocol). Additionally, each individual (robot) in the MRS should be able to work

even when the whole system state is unknown [MJM1995].

2.4 Dependable Multiple Robotic Systems

Summon [LEP2012] defines reliability in robotics as the probability of a determined

system delivery the correct service without failure during a period of time. Different

measures of reliability can be given in robotics. For example, an individual component, or

an individual robot, or even a MRS can be measured. MRS should avoid as much as

possible to have a single point of failure. Instead, the system must be distributed and able

to work as a single. Because the large number of individual components/robots, the MRS

could be fault tolerant to an uncertain environment. Also, the MRS known as swarm robots

can properly handle a single robot failure. According to [MOH2009], there is a difference

between MRS and swarm. Swarm robots are a new approach to the coordination of multi-

robot systems which consist of large numbers of relatively simple robots which takes its

inspiration from social insects.

19

2.4.1 Reliability in Robotics

Robotics is a research area with a vast amount of literature, even though only a

limited part of this effort addresses reliability in robotics [MLL1998]. Also the analysis to

explore the reasons of how the robots fail is not very common in the literature [JCA2003].

Centralized approaches to online diagnosis MRS do not scale well basically for two different

reasons: complexity of the solutions and the need of communicate each individual to a

central diagnoser [DAI2007].

Modern robots usually use the same electronic components and devices from

computers. Computers use unreliable components, for this reason they improve their

reliability using techniques like error control codes, duplication with comparison, triplication

with voting, diagnostics to locate failed components, etc. Similar reliability techniques can

be applicable for robotics. One of the main reasons why mobile robots fail is because the

real environment cannot be completely mapped and it is naturally dynamic.

Because of the dynamic environment, fault tolerant systems for mobile robots have

to be able to handle and even learn from the new situation several times. Because of this

complex scenario, there are several approaches to implement reliability in robotics. This

work will introduce some of these techniques and the next section explains dependability in

MRS.

2.4.2 Reliability in Multiple Robotics Systems

Multiple Robots Systems (MRS) need to be reliable as a whole [LEP2012]. For these

reasons there are some questions to be addressed:

• How to detect when robots have failed?

• How to diagnose robots failures?

• How to respond to these failures?

Instead of single-robots systems (SRS) that are designed to be robust as a single,

multiple robots systems (MRS) are design to be fault tolerant, it means, continue working

even after a fault occurs. MRS are designed to take advantage of the collective to

accomplish the work as a team, it means, they need to be able to communicate between

them and a healthy robot could take over a task from a robot in a faulty state.

20

The main reason of MRS is to achieve significant level of reliability through the

redundancy or multiple robots. The key motivation is that several robots faults can be

overcome by the redundancy system. In order to achieve this level of reliability the whole

system must be developed with these faults in mind. Internal and external reasons can

drive the MRS to a fault state. A software design defect is an internal reason that could lead

a robot to a fault state. On the other hand, an unexpected environment changes driving the

robot to a fault state is an example of external problem. Usually problems caused by

external reasons are more difficult to handle or avoid than the internals.

Follow there are some of the challenges of achieve reliability in MRS:

• Individual robot failure: The total number of individual components parts in a system is

directed related with the probability of a fault occurs [JCA2005]. In Carlson and Murphy

observed many different causes of failures leading to low reliability of robots operated by

humans. This study also showed that custom designed components are less reliable

than mass-produced components such as power supply and sensors.

• Local perspective: Each one of the robots maintains only a local perspective and is not

able to see the system as a whole. In order to keep the entire system fault tolerant, the

system should be distributed and not centralized. It allows the system to be more fault

tolerant and also brings scalability to the MRS.

• Interference: The existence of MRS sharing the same physical environment can cause

interference and contention. These issues must be addressed to enable MRS

application.

• Software errors: As all complex software systems, the MRS software can also contain

bugs that raise faults. Because of the complexity these software, defects/bugs could be

difficult to detect and to fix.

• Communication failures: In MRS the communication between the individual robots is a

requirement to enable the whole system works as expected. According to [RCA1993],

all individual robots have to be able to work even when the communication with others

are not available.

21

3 State of the Art

According to [LEP2012] there are large possibilities of faults in robotics, such as:

robot sensors faults, uncertain environment models, limited power and computation limits.

In order to address these complex faulty scenarios there are some tools developed

that intend to help engineers and developers to handle these problem. Robot middlewares

are one of these tools developed to abstract part of the complexity of these problems.

Several robot middlewares [BRG2009], [BRG2010], [MAK2007] try to address the

fault detection problem but only single parts of the problem are addressed. Each one of

these middleware monitoring tools starts from scratch. And also most of them are driven by

the capabilities of the robotics middleware and not by the robotics field needs. Also robot

middlewares are usually developed to work as a single and it makes difficult to observe the

system as a whole.

3.1 Individual Robots Fault Detection

According to [MHA2003] the most popular method of fault detection in robot systems

is comparing the sensors values with a pre-determined range of acceptable values (use of

thresholds). Other well-known fault detection method is creating a vote system based on

different redundant components [RCA2003]. If a determined individual component is in

faulty state the result will be different of the others. So this individual component could be

ignored and the others values are used instead.

Logging is another fault detection technique where data is collected in advance to be

analyzed later (off-line fault detection). During the normal runtime, all necessary data is

collected and stored in some device. The disadvantages of this technique are that a huge

amount of data could be generated. Usually Logging needs another monitor to check if the

device is not full and needs clean-up actions [LOT2011]. Logging could be used for SRS or

for MRS.

3.2 Multiple Robots Fault Detection

Fault detection systems in MRS [MEN2010] have the distribution as a coefficient that

increases the complexity of the process. The MRS must be able to cooperate and

communicate with each other to achieve satisfactory performance and stability. A

networked control system is a requirement to connect all agents through communication

22

networks. Because of this complexity these systems are subject to faults, performance

deterioration or even interrupt the operation.

According to [MEN2010], several different methods and techniques to deal with

these problems can be found in the literature. However, usually these methods are

centralized designed, without attending the distributed and decentralized nature. A

technique that could be used to monitor MRS is the Distributed Artificial Intelligence (DAI).

This methodology is based on the creation of a supervision system agent that is able to

communicate direct with other agents in order to perform monitor tasks. Summon et al.

[CHR2009] states that one of the most important advantages of swarm robotic systems is

redundancy. In case one robot breaks down, another robot can take steps to repair the

failed robot or take over the failed robot’s task. The solution proposed in this paper is

creating a completely decentralized algorithm to detect non-operational robots in a swarm

robotic system. Each robot flashes by lighting up its on-board light-emitting diodes (LEDs),

and neighboring robots are driven to flash in synchrony. Robots that contain error do not

flash periodically and can be detected by others. This innovative approach does not use

conventional networking communication to perform monitoring tasks what is an advantage

compared with other approaches because it does not generate network traffic and it does

not depend on the network.

The work [KBL2006] proposes a metric for evaluation the effectiveness of fault-

tolerance system. Common metrics are defined and used to measure fault-tolerance of the

different systems within the context of system. The goal of this work is to measure by

identifying the influence of fault-tolerance towards overall system performance. The work

also focuses on capture the effect of intelligence, reasoning, or learning on the effective

fault-tolerance of the system. According to this work only few methods are designed to

attend the distributed and decentralized nature of MRS. An appropriate fault tolerant

controller that implements fault detection and diagnosis systems is necessary for monitoring

MRS.

RoSHA (Multi-Robot Self-Healing Architecture) [RSH2013] is an architecture that

offers self-healing capabilities for MRS. This architecture of the self-healing add-on should

be resource efficient to prevent indirect interferences. Scalability is another important

requirement. The self-healing add-on should be independent from size and distribution of a

MRS. Beside these envisioned features of a self-healing architecture, humans should be

still able to oversee and control the system. There are five key characteristics of the RoSHA

23

architecture: Resource-efficient, high degree of configurability, human controllability,

extensibility and modularity and MRS support.

RoSHA is a self-healing add-on that fulfills the dependability requirements. According

to image 7 RoSHA architecture, ROS diagnostics provides some of these requirements

Image 7 – Overview of the RoSHA architecture [RSH2013]

Image 7 shows the RoSHA architecture are divided in 4 components. The monitoring

component collects information about the current system state. The diagnostic component

uses the collected information to identify failure and their root causes. Detected faults are

reported to the recovery manager. This component selects a recovery plan from a set of

predefined policies to recover from the failure. The execution component provides a set of

generic repair actions.

The integration of the self-healing add-on in an already existing MRS is essential in

the sense of practicable usage. In order to foster real-world applications and to increase the

commercial use. This paper is a very advanced proposal on how to handle the MRS

dependability challenges, however this paper presents only a proposal on how to address a

possible solution and do not contain experiment or any artifact that this proposal was

already implemented or intend to be in the future.

24

Research Status

This chapter presents the research current status and its goals. It also presents the

status of the required activities.

3.3 Research Problem

According to [LEP2012] even MRS designed to be robust will face unexpected faults

from a very large range of possibilities. Detecting the sources of faults is the very first step

towards a fault tolerant MRS. The large number of robots, the large number of possible

faults in each robot, and a dynamic environment make the fault monitoring a complex and

mandatory task for MRS with reliability constraints.

3.4 Goals

The goal of this work is to propose a fault monitoring tool for MRS. Our proposal is to

integrate a traditional infrastructure networking monitoring tool with a robotics middleware.

Our hypothesis is that by combining two consolidated tools we are able to reduce

development cost/time by developing an extension for both tools. In return, the proposed

MRS fault monitoring tool will have the network scalability, software stability, and software

extensibility.

3.5 Research Questions

Considering the main goal and the hypothesis presented previously, this research

project intend to address the following research questions:

• Is it possible to adapt an industry standard in IT infrastructure monitoring tool to

monitoring and detecting faults in MRS?

• How effective this monitoring system will be?

3.6 Techniques and Tools Analyzed

This section compares the two main types of tools used in this research: IT

infrastructure monitoring and robotics middleware. Also describes other technologies used

during the development of this work.

25

3.6.1 IT Infrastructure Monitoring

The goal of a DCIM is to provide to the administrator/users an overview of the entire

datacenter status. DCIM tools allow the administrators to store and analyze data related to

datacenter servers [COL2012]. There are several DCIM tools consolidated in the market

with both commercial and free-software licenses. Some of the solutions are open-source

and also support the development of extensions or plugins. These plugins are used to

enhance the capability of the monitoring tool. The rest of this section introduces well-known

IT infrastructure monitoring tools.

Ganglia [GAN2013] is a "scalable distributed monitoring system" focused on clusters

and grids. It gives the user a quick and easy-to-read overview of your entire clustered

system. It is based on a hierarchical design targeted at federations of clusters. It leverages

widely used technologies such as XML for data representation, XDR for compact, portable

data transport, and data storage and visualization. The algorithms were developed to

achieve very low overheads per-node and high concurrency.

Spiceworks [SPI2013] is becoming one of the industry standard free network/system

monitoring tools. This tool uses SNMP protocol since it has low impact on the network

communication with monitoring tasks. Pre-defined alerts can be configured to monitoring

the system status. The administrator is also able to select each of these alerts and see

more detailed information about the node.

Zabbix [ZAB2013] is a network monitoring tool which offers user-defined views,

zooming, and mapping on its Web-based console. This tool uses MySQL to store historical

information, its backend is developed in C and the administrator front-end is developed in

PHP. The protocols SNMP, TCP and ICMP are supported by the agents that run in the host

capturing and sending information to the server.

Nagios is the industry standard in IT infrastructure monitoring according to

[NAG2013]. This monitoring system was developed focused on scalability and flexibility.

Nagios provides information about mission-critical IT infrastructure, allowing detecting and

repairing problems and mitigating future issues. Nagios supports the development of

extensions or plugin to enhance the original tool capability according with the needs.

The Nagios plugin is a small piece of software that must be developed following the

Nagios plugin specification in order to support Nagios API. These plugins can monitor

virtually any kind of equipment/devices. Based on these flexible aspects, the proposal is to

http://www.spiceworks.com/
http://www.zabbix.com/

26

create a custom plugin to monitor both software information and also hardware information.

Besides the flexibility, Nagios also supports almost all protocols and features supported by

the others.

3.6.2 Robotic Middleware

According to [ELK2012], robots middleware is a layer between the operating system

and software applications, as illustrated in Image 7. It is designed to manage the

heterogeneity of the hardware, improve software application quality, simplify software

design, reduce development costs, and improve software reusability.

Image 8 - Middleware layer [ELK2012]

Modern robots are considered complex distributed systems consisting of a number of

integrated hardware (such as the embedded computer and specific robotics sensors) and

software modules. The robot's modules cooperate together to achieve their goals

[MOH2008]. This section describes some of these existent solutions and briefly explains

some criteria used to select one.

Miro [SEN2001] and [HUT2002] is an object-oriented middleware for robots

developed by University of Ulm, Germany. Miro is designed and implemented by applying

object oriented design and implementation approaches using the common object request

broker architecture (CORBA) standard. According to [MIR2013] the core components have

been developed under the aid of ACE (Adaptive Communications Environment), an object

27

oriented multi-platform framework for OS-independent interprocess, network and real time

communication.

Orca [AMA2006] is a middleware framework for developing component-based

robotics. It is designed to target applications from single vehicles to distributed sensor

networks. The main goal of Orca is to enable software reuse in robotics. According to

[ORC2013] it provides the means for defining and developing the building-blocks which can

be pieced together to form arbitrarily complex robotic systems, from single vehicles to

distributed sensor networks.

According to [SAH2006] and [SKJ2006], UPnP middleware was developed to utilize

the Universal Plug and Play (UPnP) architecture for dynamic robot internal and external

software integrations and for ubiquitous robot control. UPnP was developed to offer peer-to-

peer network connectivity between PCs wireless devices [UPN2013]. UPnP uses existent

standards protocols, such as TCP/IP, HTTP and XML to connect networked devices and

manage them.

Robot Operating System (ROS) is a middleware that provides a communication layer

above the host operating system of a heterogeneous computing node. ROS was designed

to meet a specific set of challenges encountered when developing large-scale robots

systems. According to [MQU2009] the ROS main features are:

• Peer to peer (P2P): the purpose of use p2p communication is to avoid unnecessary

traffic in the network

• Tools-based: micro kernel designed instead of monolithic kernel;

• Multi-lingual: developed to be language neutral at the message layer;

•Thin: drivers and algorithm development using standalone libraries that have no

dependencies on ROS;

• Free and Open-source: The full source code of ROS is publicly available;

• Collaborative development: in order to build large systems the ROS software

system is organized into packages.

ROS has a modular design that allows advanced communication functionalities.

These advanced communication features could be extended to communicate with any kind

of other tools. Moreover ROS middleware provides some tools for fault monitoring

[LOT2011]. These tools are useful for development and monitoring purposes. Also these

28

tools are developed to monitoring one specific robot each time and not for monitoring the

entire MRS. These tools address only a single part of the overall problem of runtime

monitoring because they allow to check the status of one component/module at time.

3.6.3 ROS Concepts

ROS [ROS2014] has three levels of concepts: the Filesystem level, the Computation

Graph level, and the Community level. The first two, which are relevant for this work, are

described next.

About the file system level the most important concept is the ROS packages.

Packages are the main unit for organizing software in ROS. A package may contain ROS

runtime processes (nodes), a ROS-dependent library, datasets, configuration files, or

anything else that is usefully organized together. Packages are the most atomic build item

and release item in ROS. Meaning that the most granular thing you can build and release is

a package. Metapackages are specialized Packages which only serve to represent a group

of related other packages. For this work a simple ROS package is enough and we do not

pretend to use metapackages for instance.

Messages and Service types are two important concepts defined in the file system

level. Message descriptions are stored into the package folder MessageType.msg file and

define the data structures for messages sent in ROS. The following snapshot presents an

example of a message file that only declares a String attribute:

Message.msg

string input

Service types are service descriptions stored into package folder as a

ServiceType.srv that define the request and response data structures for services in ROS.

Example of a Service file that only declares a single String attribute for the request

and another String attribute for the response:

 Monitor.srv
string input

string output

The Computation Graph is the peer-to-peer network of ROS processes that are

processing data together. Nodes are processes that perform computation. For example,

one node controls a laser range-finder, one node controls the wheel motors. Nodes

http://wiki.ros.org/Messages
http://wiki.ros.org/srv
http://wiki.ros.org/Services

29

communicate with each other by passing messages. A message is simply a data structure,

comprising typed fields. Standard primitive types (integer, floating point, boolean, etc.) are

supported, as are arrays of primitive types. Messages can include arbitrarily nested

structures and arrays (much like C structs). Messages are routed via a transport system

with publish / subscribe semantics. A node sends out a message by publishing it to a

given topic. The topic is a name that is used to identify the content of the message. A node

that is interested in a certain kind of data will subscribe to the appropriate topic. For

monitoring and diagnostic purposes ROS suggests the use of /diagnostic topic to publish

this kind of data. For request/reply interactions ROS suggests the use of a Service which

are defined by a pair of message structures: one for the request and one for the reply. A

providing node offers a service under a name and a client uses the service by sending the

request message and awaiting the reply. ROS client libraries generally present this

interaction to the programmer as if it were a remote procedure call.

3.6.4 Fault Reporting using ROS Style - ROS Diagnostics

In ROS the task of analyzing and intuitive reporting the system state is provided by

the Diagnostics stack. It consists of development support for collecting, publishing, and

visualizing fault information. This tool-chain is built around standardized interfaces, namely

the diagnostic topic for monitoring information. Gathered status data are published

continuously on the diagnostic topics.

Two instances of the iClebo Kobuki [KBK2013] were selected to execute this

research. According to [KBK2013], iClebo Kobuki is a low-cost mobile research base

designed for education and research on state of art robotics. With continuous operation in

mind, Kobuki provides power supplies for an external computer as well as additional

sensors and actuators. Its highly accurate odometry, amended by our factory calibrated

gyroscope, enables precise navigation. The following topics summarize its main features.

Functional Specification

• Maximum translational velocity: 70 cm/s

• Maximum rotational velocity: 180 deg/s (>110 deg/s gyro performance will

degrade)

• Payload: 5 kg (hard floor), 4 kg (carpet)

• Cliff: will not drive off a cliff with a depth greater than 5cm

http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
http://wiki.ros.org/Names
http://wiki.ros.org/Names

30

• Threshold Climbing: climbs thresholds of 12 mm or lower

• Rug Climbing: climbs rugs of 12 mm or lower

• Expected Operating Time: 3/7 hours (small/large battery)

• Expected Charging Time: 1.5/2.6 hours (small/large battery)

• Docking: within a 2mx5m area in front of the docking station

Hardware Specification

• PC Connection: USB or via RX/TX pins on the parallel port

• Motor Overload Detection: disables power on detecting high current (>3A)

• Odometry: 52 ticks/enc rev, 2578.33 ticks/wheel rev, 11.7 ticks/mm

• Gyro: factory calibrated, 1 axis (110 deg/s)

• Bumpers: left, center, right

• Cliff sensors: left, center, right

• Wheel drop sensor: left, right

• Power connectors: 5V/1A, 12V/1.5A, 12V/5A

• Expansion pins: 3.3V/1A, 5V/1A, 4 x analog in, 4 x digital in, 4 x digital out

• Audio : several programmable beep sequences

• Programmable LED: 2 x two-coloured LED

• State LED: 1 x two coloured LED [Green - high, Orange - low, Green &

Blinking - charging]

• Buttons: 3 x touch buttons

• Battery: Lithium-Ion, 14.8V, 2200 mAh (4S1P - small), 4400 mAh (4S2P -

large)

• Firmware upgradeable: via usb

• Sensor Data Rate: 50Hz

• Recharging Adapter: Input: 100-240V AC, 50/60Hz, 1.5A max; Output: 19V

DC, 3.16A

31

• Netbook recharging connector (only enabled when robot is recharging):

19V/2.1A DC

• Docking IR Receiver: left, centre, right

• Diameter : 351.5mm / Height : 124.8mm / Weight : 2.35kg (4S1P - small)

Software Specification

• C++ drivers for linux and windows

• ROS node

• Gazebo Simulation

iClebo Kobuki [KBK2013] provides C++ drivers for Linux and ROS compatibility that are

the requirements of this research. Also this robot already implements the diagnostics

information necessary to monitor the robot in the real time and to integrate to the IT

Monitoring tool. Kobuki provides status information about the Watchdog, Battery, Cliff

Sensor and more. More information about these resources are presented on Section

Research progress into the Results of ROS tests chapter.

One example of the Kobuki diagnostic data raw output:

mobile_base_nodelet_manager: Watchdog: No Signal

mobile_base_nodelet_manager: Analog Input: [4095, 4095, 4095, 4095]

mobile_base_nodelet_manager: Battery: Healthy

mobile_base_nodelet_manager: Cliff Sensor: All right

mobile_base_nodelet_manager: Digital Input: [0, 0, 0, 0]

mobile_base_nodelet_manager: Gyro Sensor: Heading: -19.92 degrees

mobile_base_nodelet_manager: Motor Current: All right

mobile_base_nodelet_manager: Motor State: Motors Enabled

mobile_base_nodelet_manager: Wall Sensor: All right

mobile_base_nodelet_manager: Wheel Drop: All right

The watchdog sensors detects when the Kobuki is connected to the computer via

USB, in this example there is no signal of the robot connected to on the computer. Analog

input represents the status of the analog buttons present in the robot. Battery shows the

robot battery status. The Cliff sensor tries to detected if the robot is in a flat surface or

uphill. Digital input is digital buttons that are controlled via software. The gyro sensor gets

the current robot orientation. Motor Current monitor if the current of the motor is Ok or

32

should raise a warning or error. Motor State represents if the motor is enable or disable and

wall sensor detects when the robot hits an obstacle. The wheel drop sensors detects if one

oh the wheel is not properly in contact with the surface.

3.7 Research Activities Progress

3.7.1 Study theoretical background

 This activity was completed. The result of this activity is the Theoretical Background

section present on this work.

3.7.2 Study and tests using an IT infrastructure tools:

 This activity was completed.

 An instance of Nagios was installed and properly configured in order to understand

how this tool works and how can we adapt to add new components.

 The proposal of this research is to configure each one of the robots of the MRS as a

different host in the Nagios database. Installation and configuration steps are described

in the appendix at the end of this work.

Results of the Nagios tests

 After all Installation and configuration steps completed successfully the Nagios IT

infrastructure tool should be up and running on the Linux environment. Nagios provides

a Web portal access through Apache Web Server that is accessible at the

http://IP_ADDRESS/nagios3/. Any web browser should be able to access this web

portal. For this work purposes each robot of a MRS will be added on Nagios as a new

host in order to start monitoring the robot as a Host. Image 9 presents the screenshot of

Nagios with one host computer (robot).

Image 9 - Nagios Hosts table view

 Nagios presents a table containing all added hosts ordered by the Status or any

criteria selected by the user. Statuses information will show up for every added hosts

table on the Hosts link in the left menu.

33

Image 10 - Nagios left menu items

On the Hosts option, image 11, the user is able to see all hosts status, and in the top

of the screen a Host Status Totals and Service Status Totals is presented in order to

combine all information in one unique place. This example shows only a unique host

configured but as more hosts are been added on Nagios the information will be

summarized in here.

Image 11 - Nagios header - Host and Service Status Totals

On the Image 12 Nagios hosts table view is a central place where the administrator

is able to see all configured hosts and their compiled status. The Nagios compile all

monitored aspects of the host and summarize it. If all monitored aspects are OK the host

status is OK (green line in the image). If one of these statuses is not OK (Critical) a red line

will mark the host so the administrator can easily detect and get detailed information about

this host. Each line of this table is a different host.

Image 12 - Nagios host table view

34

In the Services link, Figure 13, the administrator can get all detailed monitored

information about a specific host on Nagios. In this research proposal all important

information about the host like System load, disk space, Linux services status, total of

processes running and also addition robot-related information will be added on Nagios as

service.

Image 13 - Nagios detailed service table view

3.7.3 Study and tests robotics middleware (ROS)

 This activity was completed successfully. An instance of ROS was installed and

properly configured. Installation and configuration steps are described in the appendix at

the end of this work.

Results of ROS tests

 After all installation and configuration steps above completed ROS should be up and

running. For start the ROS middleware the ROSCORE service needs to start. Once the

roscore is running all other topics and services could start as well.

 A Kobuki [KBK2013] robot was used to validate and test a ROS environment up and

running with a real robot. Kobuki provides C++ driver for Linux and ROS compatibility

as well as the diagnostic approach implemented that provide to the ROS diagnostic

topic all runtime information about the robot sensors. Kobuki provides several different

sensors available to monitor and diagnostic the Kobuki robot state. Through the

Watchdog sensor the Nagios is able to detect if the robot is connected or not connect to

the computer via USB. The Kobuki battery status is also available as well as a Cliff and

Gyro sensors. The Motor current sensor is useful to detected robot overload for example

and the Wall sensor can detect when the robot knock a barrier. The Whell drop sensors

says if all the wheels are in touch with the floor. ROS also provides some tools to

monitor and diagnose robot status. For example, RQT Runtime Monitor is a GUI tool

distributed with ROS that provides a visual tree of the diagnostic data. This is a real time

updated interface, illustrated at Image 14, where the operator can visualize all detailed

information about the robot sensors.

35

Image 14 - ROS RQT Runtime Monitor connect to Kobuki robot

 Image 15 shows all topic information are available from the CLI as well. For instance

the CLI rostopic echo diagnostic shows exactly the same information as a plain text

format.

Image 15 - ROS rostopic CLI output

3.7.4 Implement a plug-in to integrate robot middleware with the IT monitoring tool

 This activity is completed successfully. Several different approaches were

investigated in order to achieve an efficient integration between Nagios and ROS: (I)

36

publish/subscribe model without diagnostics; (II) Linux service; (III) ROS service; (IV)

Subscribe into diagnostic topic.

The ROS topic ‘publish/subscribe model’ did not work as expected because the

publish/subscribe paradigm is developed for exchange message in distributed systems

without worry about the order. The publisher does not wait until the subscriber receives

the message. Nagios request/reply architecture works differently. Once Nagios sends a

request the information needs to be available at this moment for the reply.

 To overcome this limitation the ‘Linux Service’ approach was studied. This proposal

intends to create a C++ Linux Service with network API from scratch. This service

would be able to subscribe in a ROS topic and keep all the received data accessible in

memory to reply the Nagios request. This approach is feasible, however, the

disadvantages are the increase of complexity and difficult the maintainability.

The ‘ROS service’ approach works similar to the previous ‘Linux Service’ approach,

but it is much easier and simpler for development and maintainability. This approach

was developed and tested during this research. The architecture of this implementation

is described in the appendix with details.

 The Image 16 illustrate Nagios host table configured with a Robot sensors check

(Nagios Reader) getting the information from a ROS Service running. This robot sensors

information was generated using ROS publish client. This tool was created to simulate

real robot information. In this example the status of the sensors service is OK and an

additional string "Status da PUC atualizado" was added.

Image 16 - Nagios service table getting ROS information

 Even though this approach worked, it needs an extra effort to implement for each

sensor node a new communication with the ROS Service . This increases the effort to

add new robots and sensors. For this reason another approach was evaluated.

The ‘Subscribe into diagnostic topic’ solution implements a client that is able to

directly connect to the Diagnostic ROS topic and collect sensor status information as Image

37

18 shows. This approach requires less implementation effort to add new robots and

sensors compared with three previous approaches. For validate this implementation the

Battery sensor of a Kobuki robot was added to be monitored by Nagios as a service.

Image 17 - Nagios service table communicating with Kobuki real robot

 This executed test demonstrates the completed solution working with a real Kobuki

robot getting the Kobuki’s battery charge status. All Kobuki’s sensors (and also other

robots) could be added using this approach. The Nagios flexibility allows to reuse the

same implemented plug-in to monitor a specific sensor in different robots. This approach

also supports a MRS running different robots middlewares in the same team at the

same time because the adopted solution it is isolated from ROS. For support that, new

plug-ins must be developed for others robots middlewares in order to communicate and

get sensor information. This approach is more simple and direct than previous ones

implemented and tested. The Image 18 illustrates how this architecture works. The

Nagios Monitor Host side in the right works exactly the same way it works in the others,

the difference here is that Nagios Reader connects to ROS Diagnostic topic instead of

connect to a custom ROS Service developed to reply to Nagios.

Image 18 - Nagios reader architecture

 This architecture connects direct with the ROS diagnostic topic. Some robots

manufactures provide drivers that are compatible with ROS diagnostic. There are two

38

different ways to implement this architecture. The first one is installing the Nagios

Reader in the robot computer and executing it remotely from the Nagios server

computer. The Nagios Reader connects to ROS diagnostic node through ROS APIs and

get the requested information printing the output on a standard output that is read by

Nagios engine. This implementation is possible because ROS is developed to work on a

network environment. ROS node is a TCP/IP service application listening on a specific

port and waiting for subscribers connections. In this case the robots do not need to

install any extra software in order to be monitored. The drawback of this approach is

because Nagios Reader needs to implement a ROS client, the ROS libraries must be

installed on the Nagios machine.

 The second option is using Nagios Remote Plug-in Executer (NRPE) instead. This

Nagios feature allows the Nagios Server to remotely connect into the target hosts

(robot), execute the action of calling Nagios Reader and send the requested information

back to the Nagios Server. The advantage of this approach is that Nagios server does

not need to install any ROS library. On the other hand, robots need to install Nagios

Reader plug-in. Both implementations are feasible and more tests are required to further

evaluate these options.

 This architecture allows Nagios to be flexible about which sensor should be

monitored for each specific robot. It enables heterogeneous MRS containing different

kinds of robots or robots with different kinds of sensors. The image 19 illustrates how

this configuration works. For each sensor there is a respective Nagios Reader script that

to able to connect to ROS diagnostic getting the specific information about this sensor.

In this example the Nagios Server trigger the Wall Sensor Reader and this sensor will

connect to the ROS Diagnostic topic and return the status of the wall sensor for this

specific robot. This operation is repeated for all robots of the MRS.

39

Image 19 - Nagios reader architecture in MRS

 In order to configure this environment some parameters should be set in Nagios

configuration files. Commands could be defined in Nagios to be used for one or more

hosts or in this cases for one or more robots computers hosts. For instance each one

this sensors (Wall Sensor, Gyro sensor, motor current sensor...) need to be added on

the commands.cfg Nagios file using the syntax described in the Source 1 code.

1. define command{

2. command_name check-battery

3. command_line /home/roman/nagios_ros_kobuki.py -c 15 -w 30

4. }

5. define command{

6. command_name check-whatchdog

7. command_line /home/roman/nagios_ros_kobuki_watchdog.py

8. }

Source 1 - Nagios commands.cfg configuration file

 After all commands defined, it is possible to define which commands will be used for

each specific host (robot). For instance in the Image 19 the Kobuki Robot 1 needs to

add which commands will be checked for this specific robot as source 2 Nagios

Kobuki_robot1.cgf configuration file shows.

40

1. # Define a service to check the robot sensors status

2. define service{

3. use generic-service ; Name of service template to use

4. host_name localhost

5. service_description Robot sensors

6. check_command check-robot

7. }

8.

9. define service{

10. use generic-service ; Name of service template to use

11. host_name localhost

12. service_description Robot check battery

13. check_command check-battery

14. }

Source 2 - Nagios Kobuki_robot1.cgf configuration file

 Another Nagios feature that could be used is Nagios defined groups. These groups

combines a set of commands pre-defined for each group. In the example above the

robots Kobuki robot 1, Kobuki robot 2 and Kobuki robot 3 have all the same sensors, so

these sensors could be defined as a group called Kobuki common sensors for instance.

After that all robots of this kind (it means that contains the same sensnors) could just

extend the Kobuki common sensors group and do not need to redefine all commands for

this robot.

Next steps

• Implement Nagios reader for all available Kobuki's sensors

 Using this approach only check-battery reader was developed, for a complete

robot monitoring solution one different reader should be implemented for each

sensors.

• Implement Nagios reader for others models of robots on lab

41

 After completed Kobuki's monitoring another robots models could be added to

be monitored as well as Kobuki.

• Implement Nagios reader for sensors available on lab

 Kobuki and other robots models are flexible and allows another kind of

sensors to be added. This different sensors could be monitored as well. See the

Kobuki's improved example on Image 19.

• Configure and execute tests on a remote host - Using NRPE

 Install Nagios in one robot and configure Nagios to access the Nagios reader

plug-ins remotely using NRPE.

• Configure and execute tests on multiple remote hosts (MRS)

 Install Nagios in more than one robot and configure Nagios to monitor the

entire MRS.

3.7.5 Define the robot’s parameters to be monitored

Study and investigate all available robots and sensors on PUCRS, data, or events that

should be collected and monitored. Also identify techniques such as value interval,

thresholds or pre-defined acceptable values to monitor and generate warning/alerts on

demand. This activity releases a table of values contain the following columns: State or

Sensor, recommended interval to check, recommended technique to monitor.

This activity is in progress. At this moment only a proof on concept was created and

executed monitoring only one sensor of Kobuki robot. The next steps of this activity is to

list and implement the same support for all available sensors.

3.7.6 Planning and executing the experiment

Create a detailed plan on how to mount and configure a controlled environment

(containing more than one robot - MRS) and define strategies to simulate fault

circumstances. The output of this task is a plan containing the steps to reproduce the

tests.

42

This activity is in progress. At this moment only a proof on concept was executed using

only one unique robot. After all robots parameters are defined and the Nagios reader be

implemented this experiment should be executed including a MRS.

3.7.7 Tests and analyses of results

 Execute the tests as planned before for a continuous period of time, for repeated

times, and document all the results. Analyze the results and document the conclusions.

3.7.8 Write the “Seminário de Andamento”

 This activity was completed successfully. The result of this activity is this report itself.

3.7.9 Review the state of the art

 Keep looking for related papers and approaches. This is a on going activity that will

continue until the end of the research. Studied similar works and make some

comparisons between the other solutions proposal and this one.

3.7.10 Write papers and Master's dissertation

 Write and submit papers for selected conferences. Also write Master’s dissertation

according to PUCRS specifications. The deliverables of this task are the submitted

papers to conferences and the final dissertation containing the complete work.

3.7.11 Present the work

 Make a presentation of all work developed to the board of professors selected to

evaluate this work.

Table 1 - Research Activities Progress

Activities
2014 / 2015

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

Ja
n

Study theoretical background

Study and tests using an IT
infrastructure tools

Study and tests robotics
middleware

Implement a plugin to integrate
robot middleware with the IT
monitoring tool

Define the robot’s parameters to
be monitored

Planning and executing the
experiment

Tests and analyses the results

Write the “Seminário de
Andamento”

Review the state of the art

Write papers and Master's
dissertation

Present the work

4 References

[AAV2001] A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental concepts of

dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[AAV2004] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and

taxonomy of dependable and secure computing,” Dependable and Secure Computing,

IEEE Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[ABA2008] A. Basu, M. Gallien, C. Lesire, and T. Nguyen, “Incremental component-based

construction and verification of a robotic system,” ECAI, 2008. [Online].

[AMA2006] A. Makarenko, A. Brooks, and T. Kaupp, "Orca: Components for Robotics," In

International Conference on Intelligent Robots and Systems (IROS), pp. 163-168, Oct.

2006.

[BLU2004] B. Lussier, R. Chatila, F. Ingrand, M.-O. Killijian, and D. Powell, “On fault

tolerance and robustness in autonomous systems”, in Proceedings of the 3rdI ARP-

IEEE/RASEURON Joint Workshop on Technical Challenges for Dependable Robots in

Human Environments, 2004.

[BRG2009] Brugali, Davide, and Patrizia Scandurra. "Component-based robotic

engineering (part i)[tutorial]." Robotics & Automation Magazine, IEEE 16.4 (2009): 84-96.

2009.

[BRG2010] Brugali, Davide, and Azamat Shakhimardanov. "Component-based robotic

engineering (part ii)." Robotics & Automation Magazine, IEEE 17.1 (2010): 100-112. 2010.

[CHR2009] Christensen, Anders Lyhne, Rehan O'Grady, and Marco Dorigo. "From fireflies

to fault-tolerant swarms of robots." Evolutionary Computation, IEEE Transactions on 13.4

(2009): 754-766. 2009.

[COL2012] Cole, Dave. "Data center infrastructure management." Data Center Knowledge

(2012).

[DAI2007] Daigle, Matthew J., Xenofon D. Koutsoukos, and Gautam Biswas. "Distributed

diagnosis in formations of mobile robots." Robotics, IEEE Transactions on 23.2 (2007): 353-

369.

45

[ELK2012] Elkady, Ayssam, and Tarek Sobh. "Robotics middleware: a comprehensive

literature survey and attribute-based bibliography." Journal of Robotics 2012.

[GAN2013] Ganglia Website. [Online] Available from: http://ganglia.sourceforge.net/ 2013.

[GDU2010] G. Dudek and M. Jenkin, Computational principles of mobile robotics.

Cambridge university press, 2010.

[HUT2002] H. Utz, S. Sablatng, S. Enderle, G. Kraetzschmar, "Miro- Middleware for Mobile

Robot Applications," IEEE Transactions on Robotics and Automation, 18(4):493-497, Aug.

2002.

[JCA2003] J. Carlson and R. R. Murphy, “Reliability analysis of mobile robots,” in Robotics

and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, vol.1.

IEEE, pp. 274–281, 2003.

[JCA2005] J. Carlson and R. R. Murphy, “How ugvs physically fail in the field,” Robotics,

IEEE Transactions on, vol. 21, no. 3, pp. 423–437, 2005.

[KBL2006] Kannan, Balajee, and Lynne E. Parker. "Fault-tolerance based metrics for

evaluating system performance in multi-robot teams." Proceedings of Performance Metrics

for Intelligent Systems Workshop. 2006.

[KBK2013] iClebo Kobuki web site. [Online] Available from: http://kobuki.yujinrobot.com

2013.

[LEP2008] L. E. Parker, “Multiple mobile robot systems,” Springer Handbook of Robotics,

pp. 921–941, 2008.

[LEP2012] L. E. Parker, “Reliability and fault tolerance in collective robot systems,”

Handbook on Collective Robotics: Fundamentals and Challenges, page To appear. Pan

Stanford Publishing, 2012.

[LOT2011] Lotz, Alex, Andreas Steck, and Christian Schlegel. "Runtime monitoring of

robotics software components: Increasing robustness of service robotic

systems." Advanced Robotics (ICAR), 2011 15th International Conference on. IEEE, 2011.

[MAK2007] Makarenko, Alexei, Alex Brooks, and Tobias Kaupp. "On the benefits of making

robotic software frameworks thin." International Conference on Intelligent Robots and

Systems. Vol. 2. 2007.

46

[MEN2010] Mendes, Mário JGC, and J. da Costa. "A multi-agent approach to a networked

fault detection system." Control and Fault-Tolerant Systems (SysTol), 2010 Conference on.

IEEE, 2010.

[MHA2003] M. Hashimoto, H. Kawashima, and F. Oba, “A multi-model based fault detection

and diagnosis of internal sensors for mobile robot,” in Intelligent Robots and Systems,

2003. (IROS2003). Proceedings. 2003 IEEE/RSJ International Conference on, vol. 4. IEEE,

pp. 3787–3792, 2003.

[MIR2013] Miro – Middleware for Robots Website. [Online] Available from:

http://www.ohloh.net/p/miro-middleware. 2013.

[MJM1995] M. J. Mataric, M. Nilsson, and K. Simsarin, “Cooperative multi-robot box-

pushing,” in Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative

Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3. IEEE, pp. 556–

561, 1995.

[MLL1998] M. L. Leuschen, I. D. Walker, and J. R. Cavallaro, “Robot reliability through

fuzzy markov models, ”in Reliability and Maintainability Symposium, 1998. Proceedings.,

Annual. IEEE, pp. 209–214, 1998.

[MLV1994] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “Robotic fault detection and

fault tolerance: Asurvey”, Reliability Engineering & System Safety, vol.46, no.2, pp.139–

158, 1994.

[MOH2008] Mohamed, Nader, Jameela Al-Jaroodi, and Imad Jawhar. “Middleware for

robotics: A survey Robotics, Automation and Mechatronics”, 2008 IEEE Conference on

IEEE, 2008.

[MOH2009] Mohan, Yogeswaran, and S. G. Ponnambalam. "An extensive review of

research in swarm robotics." Nature & Biologically Inspired Computing, 2009. NaBIC 2009.

World Congress on. IEEE, 2009.

[MQU2009] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, no. 3.2, 2009.

[NAG2013] Nagios, “Nagios - the industry standard in it infrastructure monitoring, 2013.

Available from: http://nagios.org,” [Online]. Available: http://nagios.org, 2013.

47

[ORC2013] Orca: Components for Robotics Website. [Online] Available from http://orca-

robotics.sourceforge.net/. 2013.

[PAR2010] P. A. R. Fagundes, “Plataforma de controlo e simulacao robotica,” 2010.

[RCA1993] R. C. Arkin, T. Balch, and E. Nitz, “Communication of behavorial state in multi-

agent retrieval tasks,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE

International Conference on. IEEE, pp. 588–594, 1993.

[RCA2003] R. Canham, A. H. Jackson, and A. Tyrrell, “Robot error detection using an

artificial immune system,” in Evolvable Hardware, 2003. Proceedings. NASA/DoD

Conference on. IEEE, pp. 199–207, 2003.

[RHB2007] R. H. Bordini, J. F. H¨ubner, and M. Wooldridge, Programming multi-agent

systems in AgentSpeakusingJason. Wiley. com, vol. 8, 2007.

[ROG2006] L. D. Rogério. Adaptability and Fault Tolerance. University of Kent, UK. 2006.

[ROS2014] ROS Website. [Online] Available from: http://www.ros.org, 2014.

[RSH2013] Kirchner, Dominik, Stefan Niemczyk, and Kurt Geihs. "RoSHA: A Multi-Robot

Self-Healing Architecture⋆." 17th RoboCup International Symposium, Eindhoven,

Netherlands. 2013.

[RSI2004] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots.

The MIT press, 2004.

[SAH2006] S. Ahn, J. Lee, K. Lim, H. Ko, Y. Kwon, and H. Kim, "Requirements to UPnP for

Robot Middleware," in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), Oct. 2006.

[SEN2001] S. Enderle, H. Utz, S. Sablatng, S. Simon, G. Kraetzschmar, and G. Palm,

"Miro: Middleware for autonomous mobile robots," IFAC Conference on Telematics

Applications in Automation and Robotics, 2001.

[SKJ2006] S. Ahn, K. Lim, J. Lee, H. Ko, Y. Kwon and H. Kim, "UPnP Robot Middleware for

Ubiquitous Robot Control," The 3rd International Conference on Ubiquitous Robots and

Ambient Intelligence (URAI 2006), Oct. 2006.

[SPI2013] Spirceworks Website. [Online] Available from: http://www.spiceworks.com/ 2013.

[SVE2005] S. Verret, “Current state of the art in multirobot systems,” Defence Research

and Development Canada-Suffield, no. December, 2005.

48

[UPN2013] UPnP Website. [Online] Available from: http://www.upnp.org 2013.

[VGO2004] V. Goldmanand S. Zilberstein, “Decentralized control of cooperative systems:

Categorization and complexity analysis,” J. Artif. Intell. Res.(JAIR), vol. 22, pp. 143–174,

2004.

[ZAB2013] Zabbix Website. [Online] Available from: http://www.zabbix.com/ 2013.

49

5 Appendix

5.1 Nagios installation steps

===

Steps to install Nagios

===

 Install packages

 - sudo apt-get install -y nagios3

 Set admin password

 - sudo htpasswd -c /etc/nagios3/htpasswd.users nagiosadmin

===

Nagios Remote Plugin Executor

===

The NRPE (Nagios Remote Plugin Executor) plugin allows you to monitor any remote

Linux/Unix services or network devices. This NRPE add-on allows Nagios to monitor any

local resources like CPU load, Swap, Memory usage, Online users, etc. on remote Linux

machines. After all, these local resources are not mostly exposed to external machines, an

NRPE agent must be installed and configured on the remote machines.

50

Image 20 - Nagios Web portal

5.2 Nagios configuration steps

 fix Disk Critical defect

 - This is bug #615848. You can either give the nagios user permission to that file or

just ignore the file during check. To ignore the file, edit the disk.cfg file located in

/etc/nagios-plugins/config and add the arguments [-A -i '.gvfs'] at the end of the command

line arguments for the command check_disk and check_all_disks.

5.3 ROS installation steps

==

Steps to install and configure ROS

==

 Install ROS

 http://wiki.ros.org/hydro/Installation/Ubuntu

 Configure environment variables

 source /opt/ros/<distro>/setup.bash

 Create a ROS Workspace

51

 mkdir -p ~/catkin_ws/src

 cd ~/catkin_ws/src

 catkin_init_workspace

 cd ~/catkin_ws/

 catkin_make

 source devel/setup.bash

 Filesystem Concepts

 Packages: Packages are the software organization unit of ROS code.

Each package can contain libraries, executables, scripts, or other artifacts.

 Manifest (package.xml): A manifest is a description of a package. Its

serves to define dependencies between packages and to capture meta information about

the package like version, maintainer, license, etc...

5.4 ROS configuration steps

Diagnostic

Instalation

apt-get install ros-hydro-turtlebot*

apt-get install ros-hydro-kobuki*

run only at first time

rosrun kobuki_ftdi create_udev_rules

Execute

52

connect the robot on the USB and run:

roslaunch turtlebot_bringup minimal.launch

Keyboard robot control:

 roslaunch turtlebot_teleop keyboard_teleop.launch

GUI

rosrun rqt_runtime_monitor rqt_runtime_monitor

5.5 ROS Service approach source codes

ROS Service approach is a ROS package developed to receive and store

information from other topics into a Service that is available for Nagios requests.

ROS package structure is

• ROS message file: Define the parameters to be exchanged between the service

and clients. Two strings called input and output were created.

• ROS Service: Implement the ROS Service interface and all business rules

necessary to send back replies in the Nagios format.

• ROS Publisher: Simple ROS publisher client created to simulate a real robot

information.

• ROS Nagios reader: Simple client created to allow Nagios to request information

from the ROS Service.

Image 23 illustrates this architecture. At each pre-determined interval of time the

Nagios Server execute the ROS Nagios Reader. The TOS Nagios Reader is a Nagios

plug-in that try to connect if the ROS Service passing a determined request information

that the Service could identify it is a Nagios request and send back the robot sensor

statues in Nagios format response.

53

Image 21 - ROS Service diagram

Follow the ROS Service source code and ROS Nagios Reader client example. The

ROS publisher is an created example on how to create a client that is able to publish

diagnostic information into the ROS Service (in this example could be used to publish Gyro

sensor information or any other).

5.5.1 ROS Service.cpp

#include "ros/ros.h"
#include "monitor/Monitor.h"
// basic file operations
#include <iostream>
#include <fstream>

// Persist the value on memory
std::string persist;
std::string serviceStatus;
std::string informationText;

// Get the sensor values from memory and format a Nagios output
std::string getNagiosOutput(){

 std::string empty ("");

 /* serviceStatus
 0 - OK - The plugin was able to check the service and it appeared to be functioning properly
 1 - Warning - The plugin was able to check the service, but it appeared to be above some "warning" threshold or did not
appear to be working properly
 2 - Critical - The plugin detected that either the service was not running or it was above some "critical" threshold
 3 - Unknown - Invalid command line arguments were supplied to the plugin or low-level failures internal to the plugin (such
as unable to fork, or open a tcp socket) that prevent it from performing the specified operation. Higher-level errors (such as
name resolution errors, socket timeouts, etc) are outside of the control of plugins and should generally NOT be reported as
UNKNOWN states.
 */
 // If serviceStatus is not set, set to 0
 //if (empty.compare(serviceStatus) == 0) {
 // serviceStatus.assign("0");
 // informationText.assign("No information received yet. Wait few minutes.");
 //} else {
 // TODO: Replace by a valid service Status logic

 // key -> value (IR=SENSOR OK)

 serviceStatus.assign("SENSORS OK");
 informationText.assign(persist);
 //}

 // Nagios output should be in the format:
 // SERVICE STATUS: Information text
 return serviceStatus + ": " + informationText;

54

}

bool add(monitor::Monitor::Request &req,
 monitor::Monitor::Response &res)
{

 // Check if it is a client input or a Nagios request
 std::string str1 ("nagios_request");

 if (str1.compare(req.input) == 0) {
 // Nagios request

 // get memory value and set in the response.output
 res.output = getNagiosOutput();

 // Convert string to char to be used by ROS log
 const char * c = getNagiosOutput().c_str();
 ROS_INFO("Sending response: [%s]", c);

 } else {
 // Sensor input
 // receive the value and handle it properly

 // Store the value
 res.output = req.input;
 persist = req.input;

 // Convert string to char to be used by ROS log
 const char * c = persist.c_str();
 ROS_INFO("Received and persisted value: [%s]", c);

 // Write output in a buffer

 }

 //res.output = req.input;
 return true;
}

int main(int argc, char **argv)
{

 ros::init(argc, argv, "server");
 ros::NodeHandle n;

 ros::ServiceServer service = n.advertiseService("server", add);
 ROS_INFO("Monitor server started.");

 ros::spin();

 return 0;
}

5.5.2 ROS Publisher.cpp

#include "ros/ros.h"
#include "monitor/Monitor.h"
#include <cstdlib>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "infrared_fault_detector");
 if (argc != 2)
 {
 ROS_INFO("usage: client String");
 return 1;
 }

 ros::NodeHandle n;
 ros::ServiceClient client = n.serviceClient<monitor::Monitor>("server");
 monitor::Monitor srv;
 srv.request.input = argv[1];

 if (client.call(srv))
 {
 std::cout << srv.response.output;
 //ROS_INFO("Input: %s", srv.response.output);
 }
 else
 {
 ROS_ERROR("Failed to call service");

55

 return 1;
 }

 return 0;
}

5.5.3 Nagios Reader.cpp

#include "ros/ros.h"
#include "monitor/Monitor.h"
#include <cstdlib>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "nagios_status_requester");

 ros::NodeHandle n;
 ros::ServiceClient client = n.serviceClient<monitor::Monitor>("server");
 monitor::Monitor srv;
 srv.request.input = "nagios_request";

 if (client.call(srv))
 {
 //ROS_INFO("Input: %s", srv.response.output);
 std::cout << srv.response.output << std::endl;
 return 0;
 }
 else
 {
 //ROS_ERROR("Failed to call service");
 std::cout << "SENSOR ERROR: The client is not able to connect to ROS Service." << std::endl;
 return 2;
 }

 std::cout << "Unknown error trying to connect to ROS Service." << std::endl;

 return 3;
}

5.6 Nagios reader plug-in source codes

5.6.1 Nagios battery reader.py

#!/usr/bin/env python

import sys
sys.path.append("/opt/ros/hydro/lib/python2.7/dist-packages")

import os
os.environ['PATH'] = "/opt/ros/hydro/bin:" + os.environ['PATH']

from optparse import OptionParser

import rospy
import rosnode
import os
import roslib
import sys
roslib.load_manifest('linux_hardware')
from linux_hardware.msg import LaptopChargeStatus
from diagnostic_msgs.msg import DiagnosticStatus, DiagnosticArray, KeyValue

Exit statuses recognized by Nagios
UNKNOWN = -1
OK = 0
WARNING = 1
CRITICAL = 2

TEMPLATE FOR READING PARAMETERS FROM COMMANDLINE
parser = OptionParser()
parser.add_option("-H", "--host", dest="host", default='localhost', help="A message to print after OK - ")
parser.add_option("-w", "--warning", dest="warning", default='40', help="A message to print after OK - ")
parser.add_option("-c", "--critical", dest="critical", default='20', help="A message to print after OK - ")
(options, args) = parser.parse_args()

56

Set turtlebot ROS Master URI
os.environ['ROS_MASTER_URI'] = 'http://' + options.host + ':11311'

kobuki_charge = None
kobuki_percentage = None

def callback_kobuki(data):
 global kobuki_charge
 global kobuki_percentage

 ready = False

 while not ready:
 for current in data.status:
 if current.name == "mobile_base_nodelet_manager: Battery":
 for value in current.values:
 if value.key == "Charge (Ah)":
 kobuki_charge = value.value
 if value.key == "Percent":
 kobuki_percentage = value.value
 ready = True

 time = rospy.get_time()
 kobuki_percentage = int(float(kobuki_percentage))
 rospy.signal_shutdown(0)

def listener():
 rospy.init_node('check_battery_kobuki', anonymous=True, disable_signals=True)
 rospy.Subscriber("diagnostics", DiagnosticArray , callback_kobuki)
 rospy.spin()

def myhook():
 if kobuki_percentage < int(options.critical):
 print "CRITICAL - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage)
 exiting(CRITICAL)
 elif kobuki_percentage < int(options.warning):
 print "WARNING - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage)
 exiting(WARNING)
 else:
 print "OK - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage)
 exiting(OK)

def exiting(value):
 try:
 sys.stdout.flush()
 os._exit(value)
 except:
 pass

if __name__ == '__main__':
 try:
 master = rospy.get_master()
 master.getPid()
 except Exception:
 print "UNKNOWN - Roscore not available"
 exiting(UNKNOWN)

 try:
 if len(sys.argv) < 5:
 print "usage %s -c <critical> -w <warning>" % (sys.argv[0])
 exiting(UNKNOWN)
 rospy.on_shutdown(myhook)
 listener()
 except rospy.ROSInterruptException:
 exit

	1 Introduction
	1.1 Motivations and Goals
	1.2 Organization

	2 Theoretical Background
	2.1 Autonomous Agents
	2.1.1 Characteristics of Agents
	2.1.2 Multi-Agent Systems

	2.2 Dependability
	2.2.1 Attributes
	2.2.2 Threats
	2.2.2.1 Physical Faults
	2.2.2.2 Design Faults
	2.2.2.3 Interaction Faults

	2.2.3 Means
	2.2.3.1 Fault Prevention
	2.2.3.2 Fault Removal
	2.2.3.3 Fault Tolerance
	2.2.3.4 Fault Forecasting

	2.2.4 Fault Tolerance
	2.2.4.1 Error Detection
	2.2.4.2 Error Recovery
	2.2.4.3 Fault handling

	2.3 Multiple Robots Systems (MRS)
	2.4 Dependable Multiple Robotic Systems
	2.4.1 Reliability in Robotics
	2.4.2 Reliability in Multiple Robotics Systems

	3 State of the Art
	3.1 Individual Robots Fault Detection
	3.2 Multiple Robots Fault Detection

	Research Status
	3.3 Research Problem
	3.4 Goals
	3.5 Research Questions
	3.6 Techniques and Tools Analyzed
	3.6.1 IT Infrastructure Monitoring
	3.6.2 Robotic Middleware
	3.6.3 ROS Concepts
	3.6.4 Fault Reporting using ROS Style - ROS Diagnostics

	3.7 Research Activities Progress
	3.7.1 Study theoretical background
	3.7.2 Study and tests using an IT infrastructure tools:
	3.7.3 Study and tests robotics middleware (ROS)
	3.7.4 Implement a plug-in to integrate robot middleware with the IT monitoring tool
	3.7.5 Define the robot’s parameters to be monitored
	3.7.6 Planning and executing the experiment
	3.7.7 Tests and analyses of results
	3.7.8 Write the “Seminário de Andamento”
	3.7.9 Review the state of the art
	3.7.10 Write papers and Master's dissertation
	3.7.11 Present the work

	4 References
	5 Appendix
	5.1 Nagios installation steps
	5.2 Nagios configuration steps
	5.3 ROS installation steps
	5.4 ROS configuration steps
	5.5 ROS Service approach source codes
	5.5.1 ROS Service.cpp
	5.5.2 ROS Publisher.cpp
	5.5.3 Nagios Reader.cpp

	5.6 Nagios reader plug-in source codes
	5.6.1 Nagios battery reader.py

