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1 Introduction 

Robotics started at the beginning of XX century with the needs to improve the 

productivity and quality of manufacture products. Nowadays robotics becomes more 

common and people start to use more robotics to help and accomplish a variety of tasks 

such as robot arm, automated guided vehicles, unmanned aerial vehicles, humanoid robots 

and others. Robotics is typically used to execute dangerous tasks, unhealthy tasks, places 

where it is not possible to have human control,  remote areas where is too hard or too 

expansive to send a human, or even for tasks that demands a too big workload that a 

human is not able to accomplish.  

Basically there are two different kinds of robots: stationary robots and mobile robots. 

Stationary robots are simpler than mobile because they are fixed at some controlled 

environment. It's common to use the stationary robots on industry to automate repetitive 

tasks. Also, this kind of robot is built for a very specific application. Typical applications of 

stationary industrial robots include casting, painting, welding, assembly, materials handling, 

product inspection, and testing. All these tasks can be performed with more accuracy and 

speed compared to humans. 

Mobile robotics, on the other hand, is the research area that handles the control of 

autonomous vehicle or semi-autonomous vehicle [GDU2010] and [RSI2004]. Currently, 

there are few commercial applications of mobile service robots: goods transportation, 

surveillance, inspection, cleaning or household robots, lawn mowing, pool cleaning are just 

some examples. Robotics has been evolving fast in terms of new functionalities and 

becoming affordable, increasing its use in several aspects of society [PAR2010]. This fact 

increased the development rate of new and more complex robotic applications [PAR2010], 

which require more complex software stack [ABA2008]. Despite these improvements, 

autonomous mobile robots have not yet made much impact upon industrial and domestic 

applications, mainly due to the lack of dependability, robustness, reliability and flexibility in 

real environments. This requires more research to enable the design of more efficient and 

robust robotic applications.  

One cost-effective way to provide effectiveness and robustness to robotic system is 

to use multi-robots instead of a single robot. Multi-robot systems (MRS) have some 
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advantages over single-robots systems, these advantages include increased of speed for 

task completion through parallelism and also can increased of robustness and reliability. 

MRS can implement fault-tolerant systems. For instance, when one member of the team 

fails, another can take over his work and continue that the task. An MRS of cheaper and 

simpler robots can typically provide more reliability than a more expensive and complex 

single robot [LEP2008]. On the other hand, MRS also present more complex challenges 

compared to single robot system. For instance, MRS are more complex to manage and 

coordinate the collective system, require increased communication capabilities in order to 

coordinate all robots, and they are more complex to determine its global state and to debug 

the system due to its distributed nature.  

MRS can be classified as homogeneous or heterogeneous [SVE2005]. 

Homogeneous MRS means that all members of the team have the same specification 

(hardware and software configuration). Heterogeneous MRS can have different kind of 

robots in the same team. Homogeneous MRS is easier to replace a faulty robot. On other 

hand, the advantage of heterogeneous MRS is to support different kind of specialized and 

simpler robots, compared to a robot that does several different tasks.  

Robotic systems can also be classified according to its autonomy level, i.e. its ability 

to decide how to accomplish a task based on its perception of the environment [RHB2007]. 

There are robots with no autonomy at all, called tele-operated, and semi-autonomous robot 

(fully autonomous robots are currently not feasible for reasonably complex applications). A 

robot with some level of autonomy can be called an agent. Multi-agents systems are 

commonly used to implement MRS with autonomy. 

1.1 Motivations and Goals 

Mobile robotics will become commonplace in the society if it can be cost-effective 

and dependable. Currently the cost-effectiveness of robotics is evolving since computers 

and electronics are more accessible. On the other hand, current single mobile robots lack 

effectiveness and dependability. MRS are naturally more robust than single robots due its 

intrinsic redundancy, but it increases the software complexity due to its distributed nature. 

The goal of this work is to provide means to easily monitor faults at a team of 

heterogeneous robotic agents. The detection and isolation the defective agent is a first step 

toward an adaptive MRS which can execute the desired task even in the presence of faults. 



9 
 

With more dependable robotic systems, more applications can be created to serve the 

society. 

1.2 Organization 

The Section 2  presents the theoretical background necessary to understand this 

work, such as, the autonomous agents concepts, dependability concepts, and MRS. 

Section 3 describes the state of the art in terms of individual robots fault detection and MRS 

fault detection. Section 0 specifies the research proposal, its activities, and schedule.  
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2 Theoretical Background 

This section presents a theoretical background of the main concepts used in this 

research plan. 

2.1 Autonomous Agents 

Functional programs or traditional software work basically receiving an input, process 

data and produces some output based on the received input [RHB2007]. However there are 

other kinds of programs that do not work on this traditional approach. This different kind of 

software maintain an ongoing interaction with their environment, they do not compute some 

function based on the input and return an output. Some example of these programs 

includes computer operational systems, process control systems and others. Even more 

complex software that these two previously approaches are the systems called agents 

system, an agent is a reactive system that contains autonomy in order to take actions 

determined by himself to accomplish their goals. These different systems are called agents 

because these systems are active, they are able to figure out one plan to actively pursue 

their goals. [RHB2007]. 

2.1.1 Characteristics of Agents 

Agents are systems situated in some environment. Some typical examples are the 

system stock exchange agents, these systems are developed to observe the stock market 

and, based on this information, take actions. The agent has the capability to percept its 

environment through its sensors and it is able to cause some effects on the environment via 

its actuators. See the Image 1 - Agent interaction with the environment [RHB2007]. 
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Image 1 - Agent interaction with the environment [RHB2007] 

 

According to [RHB2007] the environment occupied by an agent could be either 

physical or virtual (in case of software/simulation environment). For software agent works 

for virtual environment and robotics works for physical environment. The agents can take 

actions that will affect the environment, but they cannot, in general, completely control the 

environment. For example, a robot built to lawn-mower could stuck on a hole and not be 

able to finish its work. The real environment is dynamic and cannot be controlled so even 

the highly tested robots will face some unforeseen situations and fail.  

There are some important features expected from agents: 

• Autonomy: For agents autonomy means that agents have capacity to operate 

independently. They are able to figure out and execute a determined plan to achieve 

their goal.  

• Pro-activeness: When an agent has been delegated to do a particular goal, the agent 

needs be able to act according to his goal-directed behavior.  

• Re-activeness: Be responsive to the environment changes.  

• Social Ability: Instead of simple exchange of bytes and messages, for agents, social 

ability means to be able to cooperate and to coordinate efforts in order to achieve their 

goals. 

 



12 
 

2.1.2  Multi-Agent Systems 

Agents inhabit an environment that others agents occupy and each one of these 

agents have an impact in this environment. It is possible that one agent has control of only 

part of its environment, but often there are overlapping between the impacts of different 

agents into the environment, generating more complex scenarios. The Image 2 - Typical 

structure of a multi-agent system [RHB2007] shows a multi-agent system interacting in the 

same environment. 

 

Image 2 - Typical structure of a multi-agent system [RHB2007] 

2.2 Dependability 

The dependability of a computer system is the ability to deliver service that can be 

trusted [BLU2004]. There are three concepts that describe the notion of dependability. The 

Image 3 demonstrates these concepts. 
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Image 3 - The dependability concepts [BLU2004] 

2.2.1 Attributes 

The dependability attributes could be classified as: 

• Availability: Be available during a period of time and deliver a correct service during 

this time. 

• Reliability: Continuous deliverance of correct service during a period of time. 

• Safety: Do not cause catastrophic consequences on the users and the environment. 

• Confidentiality: Does not disclosure unauthorized information. 

• Integrity: Absence of improper state alterations. 

• Maintainability: Ability to perform repairs and modifications of the system. 

2.2.2 Threats 

In this section, we present the taxonomy of threats that may affect a system during 

its entire life. The life cycle of a system consists of two phases: development and use 

[AAV2001]. The development phase contain all activities from the initial concept 

presentation, passing by the development itself until the final test phases that shows that 

the system is ready to deliver the service to the user. During this phase of development, 

defects or bugs could be introduced by the lack of knowledge of the development team, 

complexity of the system or even for malicious objectives. 
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The threats in a system consist in failures, errors and faults. System failures are an 

event that deviates the delivery of correct service. An error is the part of the system state 

that may cause a failure. A failure occurs when an error reaches the service interface. A 

fault is the cause of error. A fault is active when it produces an error, otherwise, it is a 

dormant fault. A system can fail in different ways. There are three different taxonomies for 

faults [BLU2004] as we show in the Image 4. 

 

Image 4 - A fault taxonomy [BLU2004] 

2.2.2.1 Physical Faults 

Physical faults are faults due to adverse physical phenomena. For example, a 

hardware sensor that does not work as expected, returning a non-valid value. A common 

way to detect this kind of problems is comparing the output of two independent identical 

units, like a sensor.  

2.2.2.2 Design Faults 

Design faults are faults unintentionally caused by man during the development of the 

system. This kind of faults could be either hardware or software faults. Redundant elements 

are a common way to detect and avoid this kind of faults. 

2.2.2.3 Interaction Faults 

Interaction faults are faults resulting from the interaction with other systems or users. 

There is a distinction between accidental faults and malicious interaction faults. An operator 

mistake is an example of an accidental fault and an intentional attack is a example of 

malicious fault. 

2.2.3 Means 

For these three categories of faults mentioned before there are different ways to 

prevent these faults. These approaches to prevent the faults are called means in this 

diagram below: 
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Image 5 - Means - Fault remove techniques [BLU2004] 

2.2.3.1 Fault Prevention 

It is a way to prevent the occurrence or introduction of a fault. Fault prevention can 

be considered as a fault avoidance system. 

2.2.3.2 Fault Removal 

It is a way to reduce the number or to reduce the severity of a fault. Fault removal 

can be considered as a fault avoidance system. Both Fault Prevention and Removal are the 

attempt to develop a system without faults. 

2.2.3.3 Fault Tolerance 

It is a way to continue delivering the correct service even when a fault occurs. Fault 

Tolerance implements the concept of fault acceptance, which attempts to reduce the 

consequence of a fault. The main difference between fault tolerance and maintenance is 

that maintenance requires the participation of an external agent and fault tolerance not. 

This work focuses on fault tolerance mechanisms. 

2.2.3.4 Fault Forecasting 

Is a way to estimate the future incidence or the consequences of faults. Fault 

forecasting also implements the same concept of fault acceptance, i.e., an attempt to 

reduce or estimate the consequence of a fault. 

The development of a dependable computing system usually combines different 

techniques. This work is focused on the Fault Tolerance technique, knowing that fault is 

almost inevitably. Fault tolerance concepts through the redundancy of multiple robotics or 

redundant sensors is a good approach to keep the system working as expected, even after 

faults occur. 
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2.2.4 Fault Tolerance 

Fault tolerance mechanisms typically consist of an error detection and error 

recovering mechanisms [LUS2004], as illustrated in Image 6 – Fault Tolerance Techniques 

[LUS2004]. 

 

 

Image 6 – Fault Tolerance Techniques [AAV2004] 

2.2.4.1 Error Detection 

Error detection originates from an error signal from the system. There are two 

classes of error detection: 

1. Concurrent Error Detection: the error detection works during the same time of 

the service delivery 

2. Preemptive Error Detection: check for error while the service delivery is 

suspended. Also check for dormant faults. 

In this work the focus is on the concurrent error detection system that enables the 

service delivery and fault tolerance at the same time. 
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2.2.4.2 Error Recovery 

Recovery [BLU2004] is the process that transforms a system from a state that 

contains faults and errors to a state that can be activate again without presence of any error 

or fault. Error recovery eliminates errors in three forms: 

• Rollback: Return the system to a previous state where the system can be activated 

again. The previous saved state is called a checkpoint or safe point. Rollback is the 

most popular approach to recovery a system, however it is time and resource 

consuming. 

• Rollforward: Put the system in a state where there are no errors or faults. This is a new 

state not previously recorded. Restart the system is a possible solution for this 

approach. Note that rollback and rollforward are not mutually exclusive. Usually rollback 

is the first attempted and then rollforward is a second option. 

• Error Compensation: The erroneous state contains enough redundancy to handle the 

fault situation and enable error elimination. A common approach for error compensation 

is the fault masking. This approach requires three or more identical or similar 

components to be used implementing a vote system where the majority is chosen. 

These three techniques eliminate errors from the system state. Rollback and 

rollforward are invoked on demand. Compensation can be applied either on demand or 

systematically, at pre-scheduled events, independently of the presence of errors.  

2.2.4.3 Fault handling 

Summon [ROG2006], Fault handling is a technique that prevent fault from being 

activated again. There are four techniques of fault handling as explained below:  

• Diagnosis: Identifies the root cause of error in terms of location and type. 

• Isolation: Perform exclusion of the faulty components from further participation in service 

delivery. The exclusion could be both logical and physical. For physical exclusion the 

fault component must have a spare component for take over the tasks. 

• Reconfiguration: Set up a new configuration avoiding failed components (when it is 

possible). 

• Reinitialization: Checks, updates and records the new configuration and updates system 

tables and records. 
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2.3 Multiple Robots Systems (MRS) 

A Multiple Robots Systems (or, equivalently Collective Robotic Systems) applies the 

concept of multi-agent system for robotics. Some of the advantages of the use of MRS over 

Single-Robot Systems (SRS) are the increased speed of task completion through 

parallelism, improved solutions for tasks that are inherently distributed in space, time, or 

functionality, cheaper solutions for complex applications that can be addressed with 

multiple specialized robots, instead of use of one unique all-capable robot, the increased of 

robustness and reliability through redundancy [LEP2008]. But these advantages do not 

come for free. For instance, determining how to manage the whole system usually is much 

more complex than a SRS. The lack of centralized control is one of the reason why the 

increase of complexity of MRS [VGO2004]. Also, MRS requires increased communication 

to coordinate all the robots in the system. Increasing the number of robots can lead to 

higher levels of interference between themselves (depends on the used communication 

device and protocol). Additionally, each individual (robot) in the MRS should be able to work 

even when the whole system state is unknown [MJM1995]. 

2.4 Dependable Multiple Robotic Systems 

Summon [LEP2012] defines reliability in robotics as the probability of a determined 

system delivery the correct service without failure during a period of time. Different 

measures of reliability can be given in robotics. For example, an individual component, or 

an individual robot, or even a MRS can be measured. MRS should avoid as much as 

possible to have a single point of failure. Instead, the system must be distributed and able 

to work as a single. Because the large number of individual components/robots, the MRS 

could be fault tolerant to an uncertain environment. Also, the MRS known as swarm robots 

can properly handle a single robot failure. According to [MOH2009], there is a difference 

between MRS and swarm. Swarm robots are a new approach to the coordination of multi-

robot systems which consist of large numbers of relatively simple robots which takes its 

inspiration from social insects.  
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2.4.1 Reliability in Robotics 

Robotics is a research area with a vast amount of literature, even though only a 

limited part of this effort addresses reliability in robotics [MLL1998]. Also the analysis to 

explore the reasons of how the robots fail is not very common in the literature [JCA2003]. 

Centralized approaches to online diagnosis MRS do not scale well basically for two different 

reasons: complexity of the solutions and the need of communicate each individual to a 

central diagnoser [DAI2007].  

Modern robots usually use the same electronic components and devices from 

computers. Computers use unreliable components, for this reason they improve their 

reliability using techniques like error control codes, duplication with comparison, triplication 

with voting, diagnostics to locate failed components, etc. Similar reliability techniques can 

be applicable for robotics. One of the main reasons why mobile robots fail is because the 

real environment cannot be completely mapped and it is naturally dynamic. 

Because of the dynamic environment, fault tolerant systems for mobile robots have 

to be able to handle and even learn from the new situation several times. Because of this 

complex scenario, there are several approaches to implement reliability in robotics. This 

work will introduce some of these techniques and the next section explains dependability in 

MRS. 

2.4.2 Reliability in Multiple Robotics Systems 

Multiple Robots Systems (MRS) need to be reliable as a whole [LEP2012]. For these 

reasons there are some questions to be addressed: 

• How to detect when robots have failed? 

• How to diagnose robots failures? 

• How to respond to these failures? 

Instead of single-robots systems (SRS) that are designed to be robust as a single, 

multiple robots systems (MRS) are design to be fault tolerant, it means, continue working 

even after a fault occurs. MRS are designed to take advantage of the collective to 

accomplish the work as a team, it means, they need to be able to communicate between 

them and a healthy robot could take over a task from a robot in a faulty state. 
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The main reason of MRS is to achieve significant level of reliability through the 

redundancy or multiple robots. The key motivation is that several robots faults can be 

overcome by the redundancy system. In order to achieve this level of reliability the whole 

system must be developed with these faults in mind. Internal and external reasons can 

drive the MRS to a fault state. A software design defect is an internal reason that could lead 

a robot to a fault state. On the other hand, an unexpected environment changes driving the 

robot to a fault state is an example of external problem. Usually problems caused by 

external reasons are more difficult to handle or avoid than the internals.  

Follow there are some of the challenges of achieve reliability in MRS: 

• Individual robot failure: The total number of individual components parts in a system is 

directed related with the probability of a fault occurs [JCA2005]. In Carlson and Murphy 

observed many different causes of failures leading to low reliability of robots operated by 

humans. This study also showed that custom designed components are less reliable 

than mass-produced components such as power supply and sensors.  

• Local perspective: Each one of the robots maintains only a local perspective and is not 

able to see the system as a whole. In order to keep the entire system fault tolerant, the 

system should be distributed and not centralized. It allows the system to be more fault 

tolerant and also brings scalability to the MRS. 

• Interference: The existence of MRS sharing the same physical environment can cause 

interference and contention. These issues must be addressed to enable MRS 

application.  

• Software errors: As all complex software systems, the MRS software can also contain 

bugs that raise faults. Because of the complexity these software, defects/bugs could be 

difficult to detect and to fix.  

• Communication failures: In MRS the communication between the individual robots is a 

requirement to enable the whole system works as expected. According to [RCA1993], 

all individual robots have to be able to work even when the communication with others 

are not available. 
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3 State of the Art 

According to [LEP2012] there are large possibilities of faults in robotics, such as: 

robot sensors faults, uncertain environment models, limited power and computation limits.  

In order to address these complex faulty scenarios there are some tools developed 

that intend to help engineers and developers to handle these problem. Robot middlewares 

are one of these tools developed to abstract part of the complexity of these problems.  

Several robot middlewares [BRG2009], [BRG2010], [MAK2007] try to address the 

fault detection problem but only single parts of the problem are addressed. Each one of 

these middleware monitoring tools starts from scratch. And also most of them are driven by 

the capabilities of the robotics middleware and not by the robotics field needs. Also robot 

middlewares are usually developed to work as a single and it makes difficult to observe the 

system as a whole. 

3.1 Individual Robots Fault Detection 

According to [MHA2003] the most popular method of fault detection in robot systems 

is comparing the sensors values with a pre-determined range of acceptable values (use of 

thresholds). Other well-known fault detection method is creating a vote system based on 

different redundant components [RCA2003]. If a determined individual component is in 

faulty state the result will be different of the others. So this individual component could be 

ignored and the others values are used instead.  

Logging is another fault detection technique where data is collected in advance to be 

analyzed later (off-line fault detection). During the normal runtime, all necessary data is 

collected and stored in some device. The disadvantages of this technique are that a huge 

amount of data could be generated. Usually Logging needs another monitor to check if the 

device is not full and needs clean-up actions [LOT2011]. Logging could be used for SRS or 

for MRS. 

3.2 Multiple Robots Fault Detection 

Fault detection systems in MRS [MEN2010] have the distribution as a coefficient that 

increases the complexity of the process. The MRS must be able to cooperate and 

communicate with each other to achieve satisfactory performance and stability. A 

networked control system is a requirement to connect all agents through communication 



22 
 

networks. Because of this complexity these systems are subject to faults, performance 

deterioration or even interrupt the operation. 

According to [MEN2010], several different methods and techniques to deal with 

these problems can be found in the literature. However, usually these methods are 

centralized designed, without attending the distributed and decentralized nature. A 

technique that could be used to monitor MRS is the Distributed Artificial Intelligence (DAI).  

This methodology is based on the creation of a supervision system agent that is able to 

communicate direct with other agents in order to perform monitor tasks. Summon et al. 

[CHR2009] states that one of the most important advantages of swarm robotic systems is 

redundancy. In case one robot breaks down, another robot can take steps to repair the 

failed robot or take over the failed robot’s task. The solution proposed in this paper is 

creating a completely decentralized algorithm to detect non-operational robots in a swarm 

robotic system. Each robot flashes by lighting up its on-board light-emitting diodes (LEDs), 

and neighboring robots are driven to flash in synchrony. Robots that contain error do not 

flash periodically and can be detected by others. This innovative approach does not use 

conventional networking communication to perform monitoring tasks what is an advantage 

compared with other approaches because it does not generate network traffic and it does 

not depend on the network. 

The work [KBL2006] proposes a metric for evaluation the effectiveness of fault-

tolerance system. Common metrics are defined and used to measure fault-tolerance of the 

different systems within the context of system. The goal of this work is to measure by 

identifying the influence of fault-tolerance towards overall system performance. The work 

also focuses on capture the effect of intelligence, reasoning, or learning on the effective 

fault-tolerance of the system. According to this work only few methods are designed to 

attend the distributed and decentralized nature of MRS. An appropriate fault tolerant 

controller that implements fault detection and diagnosis systems is necessary for monitoring 

MRS.  

RoSHA (Multi-Robot Self-Healing Architecture) [RSH2013] is an architecture that 

offers self-healing capabilities for MRS. This architecture of the self-healing add-on should 

be resource efficient to prevent indirect interferences. Scalability is another important 

requirement. The self-healing add-on should be independent from size and distribution of a 

MRS. Beside these envisioned features of a self-healing architecture, humans should be 

still able to oversee and control the system. There are five key characteristics of the RoSHA 
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architecture: Resource-efficient, high degree of configurability, human controllability, 

extensibility and modularity and MRS support. 

RoSHA is a self-healing add-on that fulfills the dependability requirements. According 

to image  7 RoSHA architecture, ROS diagnostics provides some of these requirements  

 

Image 7 – Overview of the RoSHA architecture  [RSH2013] 

Image 7 shows the RoSHA architecture are divided in 4 components. The monitoring 

component collects information about the current system state. The diagnostic component 

uses the collected information to identify failure and their root causes. Detected faults are 

reported to the recovery manager. This component selects a recovery plan from a set of 

predefined policies to recover from the failure. The execution component provides a set of 

generic repair actions. 

The integration of the self-healing add-on in an already existing MRS is essential in 

the sense of practicable usage. In order to foster real-world applications and to increase the 

commercial use. This paper is a very advanced proposal on how to handle the MRS 

dependability challenges, however this paper presents only a proposal on how to address a 

possible solution and do not contain experiment or any artifact that this proposal was 

already implemented or intend to be in the future. 
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Research Status 

This chapter presents the research current status and its goals. It also presents the 

status of the required activities.  

3.3 Research Problem 

According to [LEP2012] even MRS designed to be robust will face unexpected faults 

from a very large range of possibilities. Detecting the sources of faults is the very first step 

towards a fault tolerant MRS. The large number of robots, the large number of possible 

faults in each robot, and a dynamic environment make the fault monitoring a complex and 

mandatory task for MRS with reliability constraints. 

3.4 Goals 

The goal of this work is to propose a fault monitoring tool for MRS. Our proposal is to 

integrate a traditional infrastructure networking monitoring tool with a robotics middleware. 

Our hypothesis is that by combining two consolidated tools we are able to reduce 

development cost/time by developing an extension for both tools. In return, the proposed 

MRS fault monitoring tool will have the network scalability, software stability, and software 

extensibility. 

3.5 Research Questions 

Considering the main goal and the hypothesis presented previously, this research 

project intend to address the following research questions:  

• Is it possible to adapt an industry standard in IT infrastructure monitoring tool to 

monitoring and detecting faults in MRS? 

• How effective this monitoring system will be? 

3.6 Techniques and Tools Analyzed 

This section compares the two main types of tools used in this research: IT 

infrastructure monitoring and robotics middleware. Also describes other technologies used 

during the development of this work. 
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3.6.1 IT Infrastructure Monitoring 

The goal of a DCIM is to provide to the administrator/users an overview of the entire 

datacenter status. DCIM tools allow the administrators to store and analyze data related to 

datacenter servers [COL2012]. There are several DCIM tools consolidated in the market 

with both commercial and free-software licenses. Some of the solutions are open-source 

and also support the development of extensions or plugins. These plugins are used to 

enhance the capability of the monitoring tool. The rest of this section introduces well-known 

IT infrastructure monitoring tools.  

Ganglia [GAN2013] is a "scalable distributed monitoring system" focused on clusters 

and grids. It gives the user a quick and easy-to-read overview of your entire clustered 

system. It is based on a hierarchical design targeted at federations of clusters. It leverages 

widely used technologies such as XML for data representation, XDR for compact, portable 

data transport, and data storage and visualization. The algorithms were developed to 

achieve very low overheads per-node and high concurrency. 

Spiceworks [SPI2013] is becoming one of the industry standard free network/system 

monitoring tools. This tool uses SNMP protocol since it has  low impact on the network 

communication with monitoring tasks. Pre-defined alerts can be configured to monitoring 

the system status. The administrator is also able to select each of these alerts and see 

more detailed information about the node. 

Zabbix [ZAB2013] is a network monitoring tool which offers user-defined views, 

zooming, and mapping on its Web-based console. This tool uses MySQL to store historical 

information, its backend is developed in C and the administrator front-end is developed in 

PHP. The protocols SNMP, TCP and ICMP are supported by the agents that run in the host 

capturing and sending information to the server. 

Nagios is the industry standard in IT infrastructure monitoring according to 

[NAG2013]. This monitoring system was developed focused on scalability and flexibility. 

Nagios provides information about mission-critical IT infrastructure, allowing detecting and 

repairing problems and mitigating future issues. Nagios supports the development of 

extensions or plugin to enhance the original tool capability according with the needs.  

The Nagios plugin is a small piece of software that must be developed following the 

Nagios plugin specification in order to support Nagios API. These plugins can monitor 

virtually any kind of equipment/devices. Based on these flexible aspects, the proposal is to 

http://www.spiceworks.com/
http://www.zabbix.com/
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create a custom plugin to monitor both software information and also hardware information. 

Besides the flexibility, Nagios also supports almost all protocols and features supported by 

the others. 

3.6.2 Robotic Middleware 

According to [ELK2012], robots middleware is a layer between the operating system 

and software applications, as illustrated in Image 7. It is designed to manage the 

heterogeneity of the hardware, improve software application quality, simplify software 

design, reduce development costs, and improve software reusability.  

 

Image 8 - Middleware layer [ELK2012] 

Modern robots are considered complex distributed systems consisting of a number of 

integrated hardware (such as the embedded computer and specific robotics sensors) and 

software modules. The robot's modules cooperate together to achieve their goals 

[MOH2008]. This section describes some of these existent solutions and briefly explains 

some criteria used to select one. 

Miro [SEN2001] and [HUT2002] is an object-oriented middleware for robots 

developed by University of Ulm, Germany. Miro is designed and implemented by applying 

object oriented design and implementation approaches using the common object request 

broker architecture (CORBA) standard. According to [MIR2013] the core components have 

been developed under the aid of ACE (Adaptive Communications Environment), an object 



27 
 

oriented multi-platform framework for OS-independent interprocess, network and real time 

communication. 

Orca [AMA2006] is a middleware framework for developing component-based 

robotics. It is designed to target applications from single vehicles to distributed sensor 

networks. The main goal of Orca is to enable software reuse in robotics. According to 

[ORC2013] it provides the means for defining and developing the building-blocks which can 

be pieced together to form arbitrarily complex robotic systems, from single vehicles to 

distributed sensor networks. 

According to [SAH2006] and [SKJ2006], UPnP middleware was developed to utilize 

the Universal Plug and Play (UPnP) architecture for dynamic robot internal and external 

software integrations and for ubiquitous robot control. UPnP was developed to offer peer-to-

peer network connectivity between PCs wireless devices [UPN2013]. UPnP uses existent 

standards protocols, such as TCP/IP, HTTP and XML to connect networked devices and 

manage them.  

Robot Operating System (ROS) is a middleware that provides a communication layer 

above the host operating system of a heterogeneous computing node. ROS was designed 

to meet a specific set of challenges encountered when developing large-scale robots 

systems. According to [MQU2009] the ROS main features are: 

• Peer to peer (P2P): the purpose of use p2p communication is to avoid unnecessary 

traffic in the network 

• Tools-based: micro kernel designed instead of monolithic kernel; 

• Multi-lingual: developed to be language neutral at the message layer; 

•Thin: drivers and algorithm development using standalone libraries that have no 

dependencies on ROS; 

• Free and Open-source: The full source code of ROS is publicly available; 

• Collaborative development: in order to build large systems the ROS software 

system is organized into packages. 

ROS has a modular design that allows advanced communication functionalities. 

These advanced communication features could be extended to communicate with any kind 

of other tools. Moreover ROS middleware provides some tools for fault monitoring 

[LOT2011]. These tools are useful for development and monitoring purposes. Also these 
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tools are developed to monitoring one specific robot each time and not for monitoring the 

entire MRS. These tools address only a single part of the overall problem of runtime 

monitoring because they allow to check the status of one component/module at time. 

3.6.3 ROS Concepts 

ROS [ROS2014] has three levels of concepts: the Filesystem level, the Computation 

Graph level, and the Community level. The first two, which are relevant for this work, are 

described next. 

About the file system level the most important concept is the ROS packages. 

Packages are the main unit for organizing software in ROS. A package may contain ROS 

runtime processes (nodes), a ROS-dependent library, datasets, configuration files, or 

anything else that is usefully organized together. Packages are the most atomic build item 

and release item in ROS. Meaning that the most granular thing you can build and release is 

a package. Metapackages are specialized Packages which only serve to represent a group 

of related other packages. For this work a simple ROS package is enough and we do not 

pretend to use metapackages for instance. 

Messages and Service types are two important concepts defined in the file system 

level. Message descriptions are stored into the package folder MessageType.msg file and  

define the data structures for messages sent in ROS. The following snapshot presents an 

example of a message file that only declares a String attribute: 

Message.msg 

string input 

Service types are service descriptions stored into package folder as a 

ServiceType.srv that define the request and response data structures for services in ROS. 

Example of a Service file that only declares a single String attribute for the request 

and another String attribute for the response: 

 Monitor.srv 
string input 

--- 

string output 

The Computation Graph is the peer-to-peer network of ROS processes that are 

processing data together.  Nodes are processes that perform computation. For example, 

one node controls a laser range-finder, one node controls the wheel motors. Nodes 

http://wiki.ros.org/Messages
http://wiki.ros.org/srv
http://wiki.ros.org/Services
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communicate with each other by passing messages. A message is simply a data structure, 

comprising typed fields. Standard primitive types (integer, floating point, boolean, etc.) are 

supported, as are arrays of primitive types. Messages can include arbitrarily nested 

structures and arrays (much like C structs). Messages are routed via a transport system 

with publish / subscribe semantics. A node sends out a message by publishing it to a 

given topic. The topic is a name that is used to identify the content of the message. A node 

that is interested in a certain kind of data will subscribe to the appropriate topic. For 

monitoring and diagnostic purposes ROS suggests the use of /diagnostic topic to publish 

this kind of data. For request/reply interactions ROS suggests the use of a Service which 

are defined by a pair of message structures: one for the request and one for the reply. A 

providing node offers a service under a name and a client uses the service by sending the 

request message and awaiting the reply. ROS client libraries generally present this 

interaction to the programmer as if it were a remote procedure call. 

3.6.4 Fault Reporting using ROS Style - ROS Diagnostics 

In ROS the task of analyzing and intuitive reporting the system state is provided by 

the Diagnostics stack. It consists of development support for collecting,  publishing, and 

visualizing fault information. This tool-chain is built around standardized interfaces, namely 

the diagnostic topic for monitoring information. Gathered status data are published 

continuously on the diagnostic topics. 

Two instances of the iClebo Kobuki  [KBK2013] were selected to execute this 

research. According to [KBK2013], iClebo Kobuki is a low-cost mobile research base 

designed for education and research on state of art robotics. With continuous operation in 

mind, Kobuki provides power supplies for an external computer as well as additional 

sensors and actuators. Its highly accurate odometry, amended by our factory calibrated 

gyroscope, enables precise navigation. The following topics summarize its main features. 

Functional Specification 

• Maximum translational velocity: 70 cm/s 

• Maximum rotational velocity: 180 deg/s (>110 deg/s gyro performance will 

degrade) 

• Payload: 5 kg (hard floor), 4 kg (carpet) 

• Cliff: will not drive off a cliff with a depth greater than 5cm 

http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
http://wiki.ros.org/Names
http://wiki.ros.org/Names
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• Threshold Climbing: climbs thresholds of 12 mm or lower 

• Rug Climbing: climbs rugs of 12 mm or lower 

• Expected Operating Time: 3/7 hours (small/large battery) 

• Expected Charging Time: 1.5/2.6 hours (small/large battery) 

• Docking: within a 2mx5m area in front of the docking station 

Hardware Specification 

• PC Connection: USB or via RX/TX pins on the parallel port 

• Motor Overload Detection: disables power on detecting high current (>3A) 

• Odometry: 52 ticks/enc rev, 2578.33 ticks/wheel rev, 11.7 ticks/mm 

• Gyro: factory calibrated, 1 axis (110 deg/s) 

• Bumpers: left, center, right 

• Cliff sensors: left, center, right 

• Wheel drop sensor: left, right 

• Power connectors: 5V/1A, 12V/1.5A, 12V/5A 

• Expansion pins: 3.3V/1A, 5V/1A, 4 x analog in, 4 x digital in, 4 x digital out 

• Audio : several programmable beep sequences 

• Programmable LED: 2 x two-coloured LED 

• State LED: 1 x two coloured LED [Green - high, Orange - low, Green & 

Blinking - charging] 

• Buttons: 3 x touch buttons 

• Battery: Lithium-Ion, 14.8V, 2200 mAh (4S1P - small), 4400 mAh (4S2P - 

large) 

• Firmware upgradeable: via usb 

• Sensor Data Rate: 50Hz 

• Recharging Adapter: Input: 100-240V AC, 50/60Hz, 1.5A max; Output: 19V 

DC, 3.16A 
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• Netbook recharging connector (only enabled when robot is recharging): 

19V/2.1A DC 

• Docking IR Receiver: left, centre, right 

• Diameter : 351.5mm / Height : 124.8mm / Weight : 2.35kg (4S1P - small) 

Software Specification 

• C++ drivers for linux and windows 

• ROS node 

• Gazebo Simulation 

iClebo Kobuki  [KBK2013] provides C++ drivers for Linux and ROS compatibility that are 

the requirements of this research. Also this robot already implements the diagnostics 

information necessary to monitor the robot in the real time and to integrate to the IT 

Monitoring tool. Kobuki provides status information about the Watchdog, Battery, Cliff 

Sensor and more. More information about these resources are presented on Section 

Research progress into the Results of ROS tests chapter. 

One example of the Kobuki diagnostic data raw output:  

mobile_base_nodelet_manager: Watchdog: No Signal 

mobile_base_nodelet_manager: Analog Input: [4095, 4095, 4095, 4095] 

mobile_base_nodelet_manager: Battery: Healthy 

mobile_base_nodelet_manager: Cliff Sensor: All right 

mobile_base_nodelet_manager: Digital Input: [0, 0, 0, 0] 

mobile_base_nodelet_manager: Gyro Sensor: Heading: -19.92 degrees 

mobile_base_nodelet_manager: Motor Current: All right 

mobile_base_nodelet_manager: Motor State: Motors Enabled 

mobile_base_nodelet_manager: Wall Sensor: All right 

mobile_base_nodelet_manager: Wheel Drop: All right 

The watchdog sensors detects when the Kobuki is connected to the computer via 

USB, in this example there is no signal of the robot connected to on the computer. Analog 

input represents the status of the analog buttons present in the robot. Battery shows the 

robot battery status. The Cliff sensor tries to detected if the robot is in a flat surface or 

uphill. Digital input is digital buttons that are controlled via software. The gyro sensor gets 

the current robot orientation. Motor Current monitor if the current of the motor is Ok or 
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should raise a warning or error. Motor State represents if the motor is enable or disable and 

wall sensor detects when the robot hits an obstacle. The wheel drop sensors detects if one 

oh the wheel is not properly in contact with the surface. 

3.7 Research Activities Progress 

3.7.1 Study theoretical background 

 This activity was completed. The result of this activity is the Theoretical Background 

section present on this work. 

3.7.2 Study and tests using an IT infrastructure tools:  

 This activity was completed.  

 An instance of Nagios was installed and properly configured in order to understand 

how this tool works and how can we adapt to add new components.  

 The proposal of this research is to configure each one of the robots of the MRS as a 

different host in the Nagios database. Installation and configuration steps are described 

in the appendix at the end of this work. 

Results of the Nagios tests 

 After all Installation and configuration steps completed successfully the Nagios IT 

infrastructure tool should be up and running on the Linux environment. Nagios provides 

a Web portal access through Apache Web Server that is accessible at the 

http://IP_ADDRESS/nagios3/. Any web browser should be able to access this web 

portal. For this work purposes each robot of a MRS will be added on Nagios as a new 

host in order to start monitoring the robot as a Host. Image 9 presents the screenshot of 

Nagios with one host computer (robot). 

 

Image 9 - Nagios Hosts table view 

 

 Nagios presents a table containing all added hosts ordered by the Status or any 

criteria selected by the user. Statuses information will show up for every added hosts 

table on the Hosts link in the left menu. 
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Image 10 - Nagios left menu items 

On the Hosts option, image 11, the user is able to see all hosts status, and in the top 

of the screen a Host Status Totals and Service Status Totals is presented in order to 

combine all information in one unique place. This example shows only a unique host 

configured but as more hosts are been added on Nagios the information will be 

summarized in here.  

 

Image 11 - Nagios header - Host and Service Status Totals 

 

On the Image 12 Nagios hosts table view is a central place where the administrator 

is able to see all configured hosts and their compiled status. The Nagios compile all 

monitored aspects of the host and summarize it. If all monitored aspects are OK the host 

status is OK (green line in the image). If one of these statuses is not OK (Critical) a red line 

will mark the host so the administrator can easily detect and get detailed information about 

this host. Each line of this table is a different host.  

 

Image 12 - Nagios host table view 
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In the Services link, Figure 13, the administrator can get all detailed monitored 

information about a specific host on Nagios. In this research proposal all important 

information about the host like System load, disk space, Linux services status, total of 

processes running and also addition robot-related information will be added on Nagios as 

service.  

 

Image 13 - Nagios detailed service table view 

3.7.3 Study and tests robotics middleware (ROS) 

 This activity was completed successfully. An instance of ROS was installed and 

properly configured. Installation and configuration steps are described in the appendix at 

the end of this work. 

Results of ROS tests 

 After all installation and configuration steps above completed ROS should be up and 

running. For start the ROS middleware the ROSCORE service needs to start. Once the 

roscore is running all other topics and services could start as well. 

 A Kobuki  [KBK2013] robot was used to validate and test a ROS environment up and 

running with a real robot. Kobuki  provides C++ driver for Linux and ROS compatibility 

as well as the diagnostic approach implemented that provide to the ROS diagnostic 

topic all runtime information about the robot sensors. Kobuki provides several different 

sensors available to monitor and diagnostic the Kobuki robot state. Through the 

Watchdog sensor the Nagios is able to detect if the robot is connected or not connect to 

the computer via USB. The Kobuki battery status is also available as well as a Cliff and 

Gyro sensors. The Motor current sensor is useful to detected robot overload for example 

and the Wall sensor can detect when the robot knock a barrier. The Whell drop sensors 

says if all the wheels are in touch with the floor. ROS also provides some tools to 

monitor and diagnose robot status. For example, RQT Runtime Monitor is a GUI tool 

distributed with ROS that provides a visual tree of the diagnostic data. This is a real time 

updated interface, illustrated at Image 14, where the operator can visualize all detailed 

information about the robot sensors.  
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Image 14 - ROS RQT Runtime Monitor connect to Kobuki robot 

 Image 15 shows all topic information are available from the CLI as well. For instance 

the CLI rostopic echo diagnostic shows exactly the same information as a plain text 

format.  

 

Image 15 - ROS rostopic CLI output 

 

3.7.4 Implement a plug-in to integrate robot middleware with the IT monitoring tool 

 This activity is completed successfully. Several different approaches were 

investigated in order to achieve an efficient integration between Nagios and ROS: (I) 
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publish/subscribe model without diagnostics; (II) Linux service; (III) ROS service; (IV) 

Subscribe into diagnostic topic. 

The ROS topic ‘publish/subscribe model’ did not work as expected because the 

publish/subscribe paradigm is developed for exchange message in distributed systems 

without worry about the order. The publisher does not wait until the subscriber receives 

the message. Nagios request/reply architecture works differently. Once Nagios sends a 

request the information needs to be available at this moment for the reply.  

 To overcome this limitation the ‘Linux Service’ approach was studied. This proposal 

intends to create a C++ Linux Service with network API from scratch.  This service 

would be able to subscribe in a ROS topic and keep all the received data accessible in 

memory to reply the Nagios request. This approach is feasible, however, the 

disadvantages are the increase of complexity and difficult the maintainability. 

The ‘ROS service’ approach works similar to the previous ‘Linux Service’ approach, 

but it is much easier and simpler for development and maintainability. This approach 

was developed and tested during this research. The architecture of this implementation 

is described in the appendix with details.  

 The Image 16 illustrate Nagios host table configured with a Robot sensors check 

(Nagios Reader) getting the information from a ROS Service running. This robot sensors 

information was generated using ROS publish client. This tool was created to simulate 

real robot information. In this example the status of the sensors service is OK and an 

additional string "Status da PUC atualizado" was added. 

 

Image 16 - Nagios service table getting ROS information 

   

  Even though this approach worked, it needs an extra effort to implement for each 

sensor node a new communication with the ROS Service . This increases the effort to 

add new robots and sensors.  For this reason another approach was evaluated. 

The ‘Subscribe into diagnostic topic’ solution implements a client that is able to 

directly connect to the Diagnostic ROS topic and collect sensor status information as Image 
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18 shows. This approach requires less implementation effort to add new robots and 

sensors compared with three previous approaches. For validate this implementation the 

Battery sensor of a Kobuki robot was added to be monitored by Nagios as a service. 

 

Image 17 - Nagios service table communicating with Kobuki real robot 

 This executed test demonstrates the completed solution working with a real Kobuki 

robot  getting the Kobuki’s battery charge status. All Kobuki’s sensors (and also other 

robots) could be added using this approach. The Nagios flexibility allows to reuse the 

same implemented plug-in to monitor a specific sensor in different robots. This approach 

also supports a MRS running different robots middlewares in the same team at the 

same time because the adopted solution it is isolated from ROS. For support that, new 

plug-ins must be developed for others robots middlewares in order to communicate and 

get sensor information. This approach is more simple and direct than previous ones 

implemented and tested. The Image 18 illustrates how this architecture works. The 

Nagios Monitor Host side in the right works exactly the same way it works in the others, 

the difference here is that Nagios Reader connects to ROS Diagnostic topic instead of 

connect to a custom ROS Service developed to reply to Nagios.  

 

Image 18 - Nagios reader architecture 

 

 This architecture connects direct with the ROS diagnostic topic. Some robots 

manufactures provide drivers that are compatible with ROS diagnostic. There are two 
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different ways to implement this architecture. The first one is installing the Nagios 

Reader in the robot computer and executing it remotely from the Nagios server 

computer. The Nagios Reader connects to ROS diagnostic node through ROS APIs and 

get the requested information printing the output on a standard output that is read by 

Nagios engine. This implementation is possible because ROS is developed to work on a 

network environment. ROS node is a TCP/IP service application listening on a specific 

port and waiting for subscribers connections. In this case the robots do not need to 

install any extra software in order to be monitored. The drawback of this approach is 

because Nagios Reader needs to implement a ROS client, the ROS libraries must be 

installed on the Nagios machine.  

 The second option is using Nagios Remote Plug-in Executer (NRPE) instead. This 

Nagios feature allows the Nagios Server to remotely connect into the target hosts 

(robot), execute the action of calling Nagios Reader and send the requested information 

back to the Nagios Server. The advantage of this approach is that Nagios server does 

not need to install any ROS library. On the other hand, robots need to install Nagios 

Reader plug-in. Both implementations are feasible and more tests are required to further 

evaluate these options. 

 This architecture allows Nagios to be flexible about which sensor should be 

monitored for each specific robot. It enables heterogeneous MRS containing different 

kinds of robots or robots with different kinds of sensors. The image 19 illustrates how 

this configuration works. For each sensor there is a respective Nagios Reader script that 

to able to connect to ROS diagnostic getting the specific information about this sensor. 

In this example the Nagios Server trigger the Wall Sensor Reader and this sensor will 

connect to the ROS Diagnostic topic and return the status of the wall sensor for this 

specific robot. This operation is repeated for all robots of the MRS. 



39 
 

 

Image 19 - Nagios reader architecture in MRS 

 In order to configure this environment some parameters should be set in Nagios 

configuration files.  Commands could be defined in Nagios to be used for one or more 

hosts or in this cases for one or more robots computers hosts. For instance each one 

this sensors (Wall Sensor, Gyro sensor, motor current sensor...) need to be added on 

the commands.cfg Nagios file using the syntax described in the Source 1 code. 

 

1.  define command{ 

2.   command_name check-battery 

3.   command_line /home/roman/nagios_ros_kobuki.py -c 15 -w 30 

4.  } 

5.  define command{ 

6.   command_name check-whatchdog 

7.   command_line /home/roman/nagios_ros_kobuki_watchdog.py  

8.  } 

Source 1 - Nagios commands.cfg configuration file 

 

 After all commands defined, it is possible to define which commands will be used for 

each specific host (robot). For instance in the Image 19 the Kobuki Robot 1 needs to 

add which commands will be checked for this specific robot as source 2 Nagios 

Kobuki_robot1.cgf configuration file shows. 
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1.  # Define a service to check the robot sensors status  

2. define service{ 

3.         use                             generic-service         ; Name of service template to use 

4.         host_name                       localhost 

5.         service_description             Robot sensors 

6.         check_command                   check-robot 

7.  } 

8. 

9. define service{ 

10.         use                             generic-service         ; Name of service template to use 

11.         host_name                       localhost 

12.         service_description             Robot check battery 

13.         check_command                   check-battery 

14.  } 

Source 2 - Nagios Kobuki_robot1.cgf configuration file 

 

 Another Nagios feature that could be used is Nagios defined groups. These groups  

combines a set of commands pre-defined for each group. In the example above  the 

robots Kobuki robot 1, Kobuki robot 2 and Kobuki robot 3 have all the same sensors, so 

these sensors could be defined as a group called Kobuki common sensors for instance. 

After that all robots of this kind (it means that contains the same sensnors) could just 

extend the Kobuki common sensors group and do not need to redefine all commands for 

this robot.  

Next steps 

• Implement Nagios reader for all available Kobuki's sensors 

 Using this approach only check-battery reader was developed, for a complete 

robot monitoring solution one different reader should be implemented for each 

sensors. 

• Implement Nagios reader for others models of robots on lab 
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 After completed Kobuki's monitoring another robots models could be added to 

be monitored as well as Kobuki. 

• Implement Nagios reader for sensors available on lab 

 Kobuki and other robots models are flexible and allows another kind of 

sensors to be added. This different sensors could be monitored as well. See the 

Kobuki's improved example on Image 19. 

• Configure and execute tests on a remote host - Using NRPE 

 Install Nagios in one robot and configure Nagios to access the Nagios reader 

plug-ins remotely using NRPE. 

• Configure and execute tests on multiple remote hosts (MRS) 

 Install Nagios in more than one robot and configure Nagios to monitor the 

entire MRS. 

 

3.7.5 Define the robot’s parameters to be monitored 

Study and investigate all available robots and sensors on PUCRS, data, or events that 

should be collected and monitored. Also identify techniques such as value interval, 

thresholds or pre-defined acceptable values to monitor and generate warning/alerts on 

demand. This activity releases a table of values contain the following columns: State or 

Sensor, recommended interval to check, recommended technique to monitor.  

This activity is in progress. At this moment only a proof on concept was created and 

executed monitoring only one sensor of Kobuki robot. The next steps of this activity is to 

list and implement the same support for all available sensors. 

3.7.6 Planning and executing the experiment 

Create a detailed plan on how to mount and configure a controlled environment 

(containing more than one robot - MRS) and define strategies to simulate fault 

circumstances. The output of this task is a plan containing the steps to reproduce the 

tests. 
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This activity is in progress. At this moment only a proof on concept was executed using 

only one unique robot. After all robots parameters are defined and the Nagios reader be 

implemented this experiment should be executed including a MRS. 

3.7.7 Tests and analyses of results 

 Execute the tests as planned before for a continuous period of time, for repeated 

times, and document all the results. Analyze the results and document the conclusions.  

3.7.8 Write the “Seminário de Andamento” 

 This activity was completed successfully. The result of this activity is this report itself. 

3.7.9 Review the state of the art 

 Keep looking for related papers and approaches. This is a on going activity that will 

continue until the end of the research. Studied similar works and make some 

comparisons between the other solutions proposal and this one. 

3.7.10  Write papers and Master's dissertation 

 Write and submit papers for selected conferences. Also write Master’s dissertation 

according to PUCRS specifications. The deliverables of this task are the submitted 

papers to conferences and the final dissertation containing the complete work. 

3.7.11 Present the work 

 Make a presentation of all work developed to the board of professors selected to 

evaluate this work. 
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5 Appendix 

5.1 Nagios installation steps 

=================================================================== 

Steps to install Nagios 

=================================================================== 

 

 Install packages 

 - sudo apt-get install -y nagios3 

 

 Set admin password 

 - sudo htpasswd -c /etc/nagios3/htpasswd.users nagiosadmin 

 

=================================================================== 

Nagios Remote Plugin Executor 

=================================================================== 

The NRPE (Nagios Remote Plugin Executor) plugin allows you to monitor any remote 

Linux/Unix services or network devices. This NRPE add-on allows Nagios to monitor any 

local resources like CPU load, Swap, Memory usage, Online users, etc. on remote Linux 

machines. After all, these local resources are not mostly exposed to external machines, an 

NRPE agent must be installed and configured on the remote machines. 
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Image 20 - Nagios Web portal 

 

5.2 Nagios configuration steps 

 fix Disk Critical defect 

 - This is bug #615848. You can either give the nagios user permission to that file or 

just ignore the file during check. To ignore the file, edit the disk.cfg file located in 

/etc/nagios-plugins/config and add the arguments [-A -i '.gvfs'] at the end of the command 

line arguments for the command check_disk and check_all_disks.  

 

5.3 ROS installation steps 

================================================================ 

Steps to install and configure ROS 

================================================================ 

 Install ROS 

 http://wiki.ros.org/hydro/Installation/Ubuntu 

 Configure environment variables 

 source /opt/ros/<distro>/setup.bash 

 Create a ROS Workspace 
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 mkdir -p ~/catkin_ws/src 

 cd ~/catkin_ws/src 

 catkin_init_workspace 

 cd ~/catkin_ws/ 

 catkin_make 

 source devel/setup.bash 

 

 Filesystem Concepts 

  Packages: Packages are the software organization unit of ROS code. 

Each package can contain libraries, executables, scripts, or other artifacts. 

  Manifest (package.xml): A manifest is a description of a package. Its 

serves to define dependencies between packages and to capture meta information about 

the package like version, maintainer, license, etc... 

5.4 ROS configuration steps 

################################################ 

Diagnostic 

################################################ 

Instalation 

################################################ 

apt-get install ros-hydro-turtlebot* 

apt-get install ros-hydro-kobuki* 

run only at first time 

rosrun kobuki_ftdi create_udev_rules  

################################################ 

################################################ 

Execute 

################################################ 
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connect the robot on the USB and run: 

roslaunch turtlebot_bringup minimal.launch 

 

Keyboard robot control: 

 roslaunch turtlebot_teleop keyboard_teleop.launch  

 

GUI 

rosrun rqt_runtime_monitor rqt_runtime_monitor 

5.5 ROS Service approach source codes 

ROS Service approach is a ROS package developed to receive and store 

information from other topics into a Service that is available for Nagios requests.  

ROS package structure is  

• ROS message file: Define the parameters to be exchanged between the service 

and clients. Two strings called input and output were created. 

• ROS Service: Implement the ROS Service interface and all business rules 

necessary to send back replies in the Nagios format.  

• ROS Publisher: Simple ROS publisher client created to simulate a real robot 

information. 

• ROS Nagios reader: Simple client created to allow Nagios to request information 

from the ROS Service. 

Image 23 illustrates this architecture. At each pre-determined interval of time the 

Nagios Server execute the ROS Nagios Reader. The TOS Nagios Reader is a Nagios 

plug-in that try to connect if the ROS Service passing a determined request information 

that the Service could identify it is a Nagios request and send back the robot sensor 

statues in Nagios format response. 
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Image 21 - ROS Service diagram 

Follow the ROS Service source code and ROS Nagios Reader client example. The 

ROS publisher is an created example on how to create a client that is able to publish 

diagnostic information into the ROS Service (in this example could be used to publish Gyro 

sensor information or any other). 

5.5.1 ROS Service.cpp 

#include "ros/ros.h" 
#include "monitor/Monitor.h" 
// basic file operations 
#include <iostream> 
#include <fstream> 
 
// Persist the value on memory 
std::string persist; 
std::string serviceStatus; 
std::string informationText; 
 
 
// Get the sensor values from memory and format a Nagios output 
std::string getNagiosOutput(){ 
 
  std::string empty (""); 
 
  /* serviceStatus 
    0 - OK - The plugin was able to check the service and it appeared to be functioning properly 
    1 - Warning - The plugin was able to check the service, but it appeared to be above some "warning" threshold or did not 
appear to be working properly 
    2 - Critical - The plugin detected that either the service was not running or it was above some "critical" threshold 
    3 - Unknown - Invalid command line arguments were supplied to the plugin or low-level failures internal to the plugin (such 
as unable to fork, or open a tcp socket) that prevent it from performing the specified operation. Higher-level errors (such as 
name resolution errors, socket timeouts, etc) are outside of the control of plugins and should generally NOT be reported as 
UNKNOWN states.  
  */ 
  // If serviceStatus is not set, set to 0 
  //if (empty.compare(serviceStatus) == 0) { 
  //    serviceStatus.assign("0"); 
  //    informationText.assign("No information received yet. Wait few minutes."); 
  //} else { 
    // TODO: Replace by a valid service Status logic 
 
    // key -> value (IR=SENSOR OK) 
     
    serviceStatus.assign("SENSORS OK"); 
    informationText.assign(persist); 
  //} 
 
  // Nagios output should be in the format: 
  //  SERVICE STATUS: Information text 
  return serviceStatus + ": " + informationText; 
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} 
 
bool add(monitor::Monitor::Request  &req, 
         monitor::Monitor::Response &res) 
{ 
 
  // Check if it is a client input or a Nagios request 
  std::string str1 ("nagios_request"); 
 
  if (str1.compare(req.input) == 0) { 
    // Nagios request 
     
    // get memory value and set in the response.output 
    res.output = getNagiosOutput(); 
 
    // Convert string to char to be used by ROS log 
    const char * c = getNagiosOutput().c_str(); 
    ROS_INFO("Sending response: [%s]", c); 
 
 
  } else { 
    // Sensor input 
    // receive the value and handle it properly 
   
    // Store the value 
    res.output = req.input; 
    persist = req.input; 
 
    // Convert string to char to be used by ROS log 
    const char * c = persist.c_str(); 
    ROS_INFO("Received and persisted value: [%s]", c); 
 
    // Write output in a buffer 
     
  } 
 
  //res.output = req.input; 
  return true; 
} 
 
int main(int argc, char **argv) 
{ 
 
  ros::init(argc, argv, "server"); 
  ros::NodeHandle n; 
 
  ros::ServiceServer service = n.advertiseService("server", add); 
  ROS_INFO("Monitor server started."); 
 
  ros::spin(); 
 
  return 0; 
} 

 

5.5.2 ROS Publisher.cpp 

#include "ros/ros.h" 
#include "monitor/Monitor.h" 
#include <cstdlib> 
 
int main(int argc, char **argv) 
{ 
  ros::init(argc, argv, "infrared_fault_detector"); 
  if (argc != 2) 
  { 
    ROS_INFO("usage: client String"); 
    return 1; 
  } 
 
  ros::NodeHandle n; 
  ros::ServiceClient client = n.serviceClient<monitor::Monitor>("server"); 
  monitor::Monitor srv; 
  srv.request.input = argv[1]; 
 
  if (client.call(srv)) 
  { 
    std::cout << srv.response.output; 
    //ROS_INFO("Input: %s", srv.response.output); 
  } 
  else 
  { 
    ROS_ERROR("Failed to call service"); 
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    return 1; 
  } 
 
  return 0; 
} 

 

5.5.3 Nagios Reader.cpp 

#include "ros/ros.h" 
#include "monitor/Monitor.h" 
#include <cstdlib> 
 
int main(int argc, char **argv) 
{ 
  ros::init(argc, argv, "nagios_status_requester"); 
 
  ros::NodeHandle n; 
  ros::ServiceClient client = n.serviceClient<monitor::Monitor>("server"); 
  monitor::Monitor srv; 
  srv.request.input = "nagios_request"; 
 
  if (client.call(srv)) 
  { 
    //ROS_INFO("Input: %s", srv.response.output); 
    std::cout << srv.response.output << std::endl; 
    return 0; 
  } 
  else 
  { 
    //ROS_ERROR("Failed to call service"); 
    std::cout << "SENSOR ERROR: The client is not able to connect to ROS Service." << std::endl; 
    return 2; 
  } 
 
  std::cout << "Unknown error trying to connect to ROS Service." << std::endl; 
 
  return 3; 
} 

 

5.6 Nagios reader plug-in source codes 

5.6.1 Nagios battery reader.py 

#!/usr/bin/env python 
 
import sys 
sys.path.append("/opt/ros/hydro/lib/python2.7/dist-packages") 
 
import os 
os.environ['PATH'] = "/opt/ros/hydro/bin:" + os.environ['PATH'] 
 
from optparse import OptionParser 
 
import rospy 
import rosnode 
import os 
import roslib 
import sys 
roslib.load_manifest('linux_hardware') 
from linux_hardware.msg import LaptopChargeStatus 
from diagnostic_msgs.msg import DiagnosticStatus, DiagnosticArray, KeyValue 
 
# Exit statuses recognized by Nagios 
UNKNOWN = -1 
OK = 0 
WARNING = 1 
CRITICAL = 2 
 
# TEMPLATE FOR READING PARAMETERS FROM COMMANDLINE 
parser = OptionParser() 
parser.add_option("-H", "--host", dest="host", default='localhost', help="A message to print after OK - ") 
parser.add_option("-w", "--warning", dest="warning", default='40', help="A message to print after OK - ") 
parser.add_option("-c", "--critical", dest="critical", default='20', help="A message to print after OK - ") 
(options, args) = parser.parse_args() 
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# Set turtlebot ROS Master URI 
os.environ['ROS_MASTER_URI'] = 'http://' + options.host  + ':11311' 
 
kobuki_charge = None 
kobuki_percentage = None 
 
def callback_kobuki(data): 
    global kobuki_charge 
    global kobuki_percentage 
 
    ready = False 
 
    while not ready: 
        for current in data.status: 
            if current.name == "mobile_base_nodelet_manager: Battery": 
            for value in current.values: 
              if value.key == "Charge (Ah)": 
            kobuki_charge = value.value 
              if value.key == "Percent": 
            kobuki_percentage = value.value 
                          ready = True 
 
    time = rospy.get_time() 
    kobuki_percentage = int(float(kobuki_percentage)) 
    rospy.signal_shutdown(0) 
 
def listener(): 
    rospy.init_node('check_battery_kobuki', anonymous=True,  disable_signals=True) 
    rospy.Subscriber("diagnostics", DiagnosticArray , callback_kobuki) 
    rospy.spin() 
 
def myhook(): 
    if kobuki_percentage < int(options.critical): 
        print "CRITICAL - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage) 
        exiting(CRITICAL) 
    elif kobuki_percentage < int(options.warning): 
        print "WARNING - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage) 
        exiting(WARNING) 
    else: 
        print "OK - Kobuki Charge Percent %s | kobuki_battery=%s" % (kobuki_percentage,kobuki_percentage) 
        exiting(OK) 
 
def exiting(value): 
    try: 
 sys.stdout.flush() 
 os._exit(value) 
    except: 
        pass 
 
if __name__ == '__main__': 
    try: 
        master = rospy.get_master() 
        master.getPid() 
    except Exception: 
        print "UNKNOWN - Roscore not available" 
 exiting(UNKNOWN) 
 
    try: 
        if len(sys.argv) < 5: 
            print "usage %s -c <critical> -w <warning>" % (sys.argv[0]) 
     exiting(UNKNOWN) 
        rospy.on_shutdown(myhook) 
        listener() 
    except rospy.ROSInterruptException: 
        exit 
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